References
[1]. Aksakal, B., Yildirim, Ö. S., & Gul, H. (2004).
Metallurgical failure analysis of various implant materials
used in orthopedic applications. Journal of Failure
Analysis and Prevention, 4(3), 17-23. https://doi.org/10.1
007/s11668-996-0007-9
[2]. Alvarado, J., Maldonado, R., Marxuach, J., & Otero,
R. (2003). Biomechanics of hip and knee prostheses.
Applications of Engineering Mechanics in Medicine, 6-22.
[3]. Amel-Farzad, H., Peivandi, M. T., & Yusof-Sani, S. M. R. (2007). In-body corrosion fatigue failure of a stainless steel
orthopaedic implant with a rare collection of different
damage mechanisms. Engineering Failure Analysis,
14(7), 1205-1217. https://doi.org/10.1016%2Fj.engfailan
al.2006.11.037
[4]. Bandyopadhyay, A., Shivaram, A., Isik, M., Avila, J. D.,
Dernell, W. S., & Bose, S. (2019). Additively manufactured
calcium phosphate reinforced CoCrMo alloy: Biotribological
and biocompatibility evaluation for loadbearing
implants. Additive Manufacturing, 28, 312-324.
https://doi.org/10.1016/j.addma.2019.04.020
[5]. Barrere, F., Layrolle, P., Van Blitterswijk, C. A., & De
Groot, K. (1999). Biomimetic calcium phosphate
coatings on Ti6Al4V: a crystal growth study of
octacalcium phosphate and inhibition by Mg2+ and
HCO3− . Bone, 25(2), 107S-111S. https://doi.org/10.1016/ 3
S8756-3282(99)00145-3
[6]. Beddoes, J., & Bucci, K. (1999). The influence of
surface condition on the localized corrosion of 316L
stainless steel orthopaedic implants. Journal of Materials
Science: Materials in Medicine, 10(7), 389-394. https://
doi.org/10.1023/A:1008918929036
[7]. Bedi, T. S., Kumar, S., & Kumar, R. (2019). Corrosion
performance of hydroxyapaite and hydroxyapaite/titania
bond coating for biomedical applications. Materials
Research Express, 7(1), 42-52.
[8]. Bio-Implants Market. (2017). Global Bio-Implants
Market Worth $134.3 Billion by 2017. Markets and Markets.
Retrieved from https://www.marketsandmarkets.com/
PressReleases/bio-implants.asp
[9]. Black, J. (1992). Biological Performance of Materials:
Fundamentals of Biocompatibility (2nd ed.). Marcel
Dekker, New York.
[10]. Blackwood, D. J. (2003). Biomaterials: past
successes and future problems. Corrosion Reviews, 21(2-
3), 97-124. https://doi.org/10.1515/CORRREV.2003.2.2-3.
97
[11]. Boretos, J. W., Eden, M., & Fung, Y. C. (1985).
Contemporary biomaterials: Material and host response,
clinical applications, new technology and legal aspects.
Journal of Biomechanical Engineering, 107(1), 1-87. https://doi.org/10.1115/1.3138526
[12]. Buford, A., & Goswami, T. (2004). Review of wear
mechanisms in hip implants: Paper I–General. Materials &
Design, 25(5), 385-393. https://doi.org/10.1016/j.matdes.
2003.11.010
[13]. Catauro, M., Papale, F., Sapio, L., & Naviglio, S.
(2016). Biological influence of Ca/P ratio on calcium
phosphate coatings by sol-gel processing. Materials
Science and Engineering: C, 65, 188-193. https://doi.org/
10.1016/j.msec.2016.03.110
[14]. Dehghanghadikolaei, A., & Fotovvati, B. (2019).
Coating techniques for functional enhancement of
metal implants for bone replacement: A review.
Materials, 12(11), 1795. https://doi.org/10.3390/ma12
111795
[15]. Fadl-allah, S.A., Mohsen, Q., & El-Shenawy, N. S.
(2011). Stainless Steel Implantation-Induced Changes in
Surface Characteristics, Corrosion Resistance and
Hematobiochemical Parameters of Male Rat, Journal of
American Science, 7(1), 84-91.
[16]. Fraker, A.C. (1987). Corrosion of metallic implants
and prosthesis devices. In ASTM Metals Handbook (9th
ed.). Corrosion, Metals Park, OH: ASM International, 1324-
1335.
[17]. Frankel, G. S. (1998). Pitting corrosion of metals: a
review of the critical factors. Journal of the Electrochemical
Society, 145(6), 2186-2198.
[18]. Geetha, M., Singh, A. K., Asokamani, R., & Gogia, A.
K. (2009). Ti based biomaterials, the ultimate choice for
orthopaedic implants–A review. Progress in Materials
Science, 54(3), 397-425. https://doi.org/10.1016/j.pmat
sci.2008.06.004
[19]. Hallab, N. J., & Jacobs, J. J. (2003). Orthopedic
implant fretting corrosion. Corrosion Reviews, 21(2-3),
183-214. https://doi.org/10.1515/CORRREV.2003.21.2-3.
183
[20]. Hanawa, T. (2009). An overview of biofunctionalization
of metals in Japan. Journal of The Royal Society Interface,
6(suppl_3), S361-S369. https://doi.org/10.1098/rsif.2008.
0427.focus
[21]. Harsimran, S., Santosh, K., & Rakesh, K. (2021).
Overview of corrosion and its control: A critical review.
Proceedings on Engineering, 3(1), 13-24. http://doi.org/
10.24874/PES03.01.002
[22]. Hench, L. L. (1991). Bioceramics: from concept to
clinic. Journal of the American Ceramic Society, 74(7),
1487-1510. https://doi.org/10.1111/j.1151-2916.1991.tb
07132.x
[23]. Hiromoto, S. (2008). Corrosion of metallic biomaterials
in cell culture environments. The Electrochemical Society
Interface, 17(2), 41-44.
[24]. Hoeppner, D. W., & Chandrasekaran, V. (1994).
Fretting in orthopaedic implants: A review. Wear, 173(1-2),
189-197. https://doi.org/10.1016/0043-1648(94)90272-0
[25]. Ige, O. O., Umoru, L. E., Adeoye, M. O., Adetunji, A.
R., Olorunniwo, O. E., & Akomolafe, I. I. (2009).
Monitoring, control and prevention practices of
biomaterials corrosion–An overview. Trends Biomaterials
Artificial Organs, 23(2), 93-104.
[26]. Jacobs, J. J., Gilbert, J. L., & Urban, R. M. (1998).
Current concepts review-corrosion of metal orthopaedic
implants. The Journal of Bone and Joint Surgery, 80(2),
268-282.
[27]. Jafari, S., Harandi, S. E., & Raman, R. S. (2015). A
review of stress-corrosion cracking and corrosion fatigue
of magnesium alloys for biodegradable implant
applications. JOM, 67(5), 1143-1153. https://doi.org/10.1
007/s11837-015-1366-z
[28]. Julmi, S., Krüger, A. K., Waselau, A. C., Meyer-
Lindenberg, A., Wriggers, P., Klose, C., & Maier, H. J.
(2019). Processing and coating of open-pored
absorbable magnesium-based bone implants. Materials
Science and Engineering: C, 98, 1073-1086. https://doi.
org/10.1016/j.msec.2018.12.125
[29]. Kamachimudali, U., Sridhar, T. M., & Raj, B. (2003).
Corrosion of bio implants. Sadhana, 28(3), 601-637.
https://doi.org/10.1007/BF02706450
[30]. Katz, J. L. (1980). Anisotropy of Young's modulus of
bone. Nature, 283(5742), 106-107. https://doi.org/10.10
38/283106a0
[31]. Kruger, J. (1979). Fundamental aspects of the
corrosion of metallic implants. In Corrosion and
Degradation of Implant Materials. ASTM International,
107-127. https://doi.org/10.1520/STP35940S
[32]. Kumar, R., & Kumar, S. (2018a). Comparative
Parabolic Rate Constant and Coating Properties of Nickel,
Cobalt, Iron and Metal Oxide Based Coating: A Review.
i-manager's Journal on Material Science, 6(1), 45-56.
https://doi.org/10.26634/jms.6.1.14379
[33]. Kumar, R., & Kumar, S. (2018b). Thermal Spray
Coating Process: A Study. International Journal of
Engineering Science and Research Technology, 7 (3),
610-617.
[34]. Kumar, R., & Kumar, S. (2020). Trending applications
of 3D printing: A study. Asian Journal of Engineering and
Applied Technology, 9(1), 1-12. https://doi.org/10.26634/
jme.11.1.17627
[35]. Kumar, R., Kumar, M., & Chohan, J. S. (2021a).
Material-specific properties and applications of additive
manufacturing techniques: a comprehensive review.
Bulletin of Materials Science, 44(3), 1-19. https://doi.org/
10.1007/s12034-021-02364-y
[36]. Kumar, R., Kumar, M., & Chohan, J. S. (2021b). The
role of additive manufacturing for biomedical
applications: A critical review. Journal of Manufacturing
Processes, 64, 828-850. https://doi.org/10.1016/j.jmapro.
2021.02.022
[37]. Kumar, R., Singh, R., & Kumar, S. (2018). Erosion and
hot corrosion phenomena in thermal power plant and
their preventive methods: A study. Asian Review of
Mechanical Engineering, 7(1), 38-45.
[38]. Kumar, R., & Sharma, R. (2021). Trending
applications and mechanical properties of 3D printing: A
review. i-manager's Journal on Mechanical Engineering,
11(1), 22-39. https://doi.org/10.26634/jme.11.1.17627
[39]. Kumar, S., & Kumar, R. (2021). Gas dynamic cold
spraying: A review on materials, parameters, applications
and challenges. i-manager's Journal on Future
Engineering and Technology, 16(2), 43-56. https://doi.
org/10.26634/jfet.16.2.17624
[40]. Kumar, S., Handa, A., & Kumar, R. (2019). Overview of wire arc spray process: A review. A Journal of Composition
Theory, 12(7), 900-907.
[41]. Kumar, S., Handa, A., Chawla, V., Grover, N. K., &
Kumar, R. (2021c). Performance of thermal-sprayed
coatings to combat hot corrosion of coal-fired boiler tube
and effect of process parameters and post-coating heat
treatment on coating performance: A review. Surface
Engineering, 1-28. https://doi.org/10.1080/02670844.
2021.1924506
[42]. Kumar, S., Kumar, R., Singh, S., Singh, S., Sidhu, H. S.,
& Handa, A. (2020a). The role of thermal spray coating to
combat hot corrosion of boiler tubes: A study. Journal of
Xidian University, 14(5), pp. 229-239. http://doi.org/10.3
7896/jxu14.5/024
[43]. Kumar, S., Nehra, M., Kedia, D., Dilbaghi, N.,
Tankeshwar, K., & Kim, K. H. (2020b). Nanotechnologybiomaterials
for orthopaedic applications: Recent
advances and future prospects. Materials Science and
Engineering: C, 106, 110154. https://doi.org/10.1016/j.
msec.2019.110154
[44]. Kumazawa, R., Watari, F., Takashi, N., Tanimura, Y.,
Uo, M., & Totsuka, Y. (2002). Effects of Ti ions and particles
on neutrophil function and morphology. Biomaterials,
23(17), 3757-3764. https://doi.org/10.1016/S0142-9612
(02)00115-1
[45]. Kurtz, S., Ong, K., Lau, E., Mowat, F., & Halpern, M.
(2007). Projections of primary and revision hip and knee
arthroplasty in the United States from 2005 to 2030. The
Journal of Bone & Joint Surgery, 89(4), 780-785. https://
doi.org/10.2106/JBJS.F.00222
[46]. Long, M., & Rack, H. J. (1998). Titanium alloys in total
joint replacement—A materials science perspective.
Biomaterials, 19(18), 1621-1639. https://doi.org/10.1016/
S0142-9612(97)00146-4
[47]. Manivasagam, G., Dhinasekaran, D., Rajamanickam,
A. (2010). Biomedical implants: Corrosion and its
prevention-A review. Recent Patents Corrosion Science,
2, 40–54.
[48]. Menini, R., Dion, M. J., So, S. K., Gauthier, M., &
Lefebvre, L. P. (2005). Sur face and corrosion
electrochemical characterization of titanium foams for implant applications. Journal of the Electrochemical
Society, 153(1), B13-B21.
[49]. Mueller, H. J., & Greener, E. H. (1970). Polarization
studies of surgical materials in Ringer's solution. Journal of
Biomedical Materials Research, 4(1), 29-41. https://doi.
org/10.1002/jbm.820040105
[50]. Nasab, M. B., Hassan, M. R., & Sahari, B. B. (2010).
Metallic biomaterials of knee and hip-A review. Trends in
Biomaterials & Artificial Organs, 24(1), 69-82.
[51]. Niinomi, M. (2003). Recent research and
development in titanium alloys for biomedical
applications and healthcare goods. Science and
Technology of Advanced Materials, 4(5), 445-455. https://
doi.org/10.1016/j.stam.2003.09.002
[52]. Niinomi, M. (2007). Fatigue characteristics of
metallic biomaterials. International Journal of Fatigue,
29(6), 992-1000.
[53]. Niinomi, M. (2008). Mechanical biocompatibilities
of titanium alloys for biomedical applications. Journal of
the Mechanical Behavior of Biomedical Materials, 1(1),
30-42. https://doi.org/10.1016/j.jmbbm.2007.07.001
[54]. Palanisamy, G. (2019). Corrosion inhibitors. Intech
Open, 1-24. https://doi.org/10.5772/intechopen.80542
[55]. Park, J. B., & Kim, Y. K. (2002). Metallic biomaterials. In
J. B. Park, & J. D Bronzino, (Eds.), Biomaterials: Principles
and Applications, (pp. 37-39). CRC Press.
[56]. Patel, N. R., & Gohil, P. P. (2012). A review on
biomaterials: scope, applications & human anatomy
significance. International Journal of Emerging
Technology and Advanced Engineering, 2(4), 91-101.
[57]. Patterson, S. P., Daffner, R. H., & Gallo, R. A. (2005).
Electrochemical corrosion of metal implants. American
Journal of Roentgenology, 184(4), 1219-1222. https://doi.
org/10.2214/ajr.184.4.01841219
[58]. Pawelec, K. M., White, A. A., & Best, S. M. (2019).
Properties and characterization of bone repair materials.
In Kendell M. Pawelec, Josep A. Planell (Eds.), Bone Repair
Biomaterials (pp. 65-102). Woodhead Publishing. https://
doi.org/10.1016/B978-0-08-102451-5.00004-4
[59]. Perrotti, V., Piattelli, A., Quaranta A. Gómez-Moreno, G., & Lezzi, G. (2017). Biocompatibility of dental
biomaterial. In Shelton, R. (Ed.), Biocompatibility of Dental
Biomaterial. Woodhead Publishing.
[60]. Ramsden, J. J., Allen, D. M., Stephenson, D. J.,
Alcock, J. R., Peggs, G. N., Fuller, G., & Goch, G. (2007).
The design and manufacture of biomedical surfaces.
CIRP Annals, 56(2), 687-711. https://doi.org/10.1016/j.
cirp.2007.10.001
[61]. Reclaru, L., Lerf, R., Eschler, P. Y., & Meyer, J. M.
(2001). Corrosion behavior of a welded stainless-steel
orthopedic implant. Biomaterials, 22(3), 269-279. https://
doi.org/10.1016/S0142-9612(00)00185-X
[62]. Roychowdhury, A., Gupta, S., Vidyasagara, P. E. C.,
& Pal, S. (2004). Wear studies of frequently used implant
materials. Trends in Biomaterials and Artificial Organs,
17(2), 135-141.
[63]. Sawada, T., Schille, C., Almadani, A., & Geis-
Gerstorfer, J. (2017). Fretting corrosion behavior of
experimental Ti-20Cr compared to titanium. Materials,
10(2), 194. https://doi.org/10.3390/ma10020194
[64]. Sidhu, H.S., Kumar, S., Kumar, R., & Singh, S. (2020).
Experimental investigation on design and analysis of
prosthetic leg. Journal of Xidian University, 14(5), 4486-
4501. https://doi.org/10.37896/jxu14.5/491.
[65]. Singh, G., Kumar, S., & Kumar, R. (2020).
Comparative study of hot corrosion behavior of thermal
sprayed alumina and titanium oxide reinforced alumina
coatings on boiler steel. Materials Research Express, 7(2).
https://doi.org/10.1088/2053-1591/ab6e7e
[66]. Singh, R., & Dahotre, N. B. (2007). Corrosion
degradation and prevention by surface modification of
biometallic materials. Journal of Materials Science:
Materials in Medicine, 18(5), 725-751. https://doi.org/10.
1007/s10856-006-0016-y
[67]. Sivakumar, M., Dhanadurai, K. S. K., Rajeswari, S., &
Thulasiraman, V. (1995). Failures in stainless steel
orthopaedic implant devices: A survey. Journal of
Materials Science Letters, 14(5), 351-354. https://doi.org/
10.1007/BF00592147
[68]. Slonaker, M., & Goswami, T. (2004). Review of wear
mechanisms in hip implants: Paper II–ceramics IG004712. Materials & Design, 25(5), 395-405. https://doi.
org/10.1016/j.matdes.2003.11.011
[69]. Songür, M., Çelikkan, H., Gökmeşe, F., Şimşek, S. A.,
Altun, N. Ş., & Aksu, M. L. (2009). Electrochemical
corrosion properties of metal alloys used in orthopaedic
implants. Journal of Applied Electrochemistry, 39(8),
1259-1265. https://doi.org/10.1007/s10800-009-9793-6
[70]. Sridhar, T. M., Eliaz, N., Mudali, U. K., & Raj, B. (2002).
Electrophoretic deposition of hydroxyapatite coatings
and corrosion aspects of metallic implants. Corrosion
Reviews, 20(4-5), 255-294. https://doi.org/10.1515/CORR
REV.2002.20.4-5.255
[71]. Sygnatowicz, M., & Tiwari, A. (2009). Controlled
synthesis of hydroxyapatite-based coatings for
biomedical application. Materials Science and
Engineering: C, 29(3), 1071-1076. https://doi.org/10.101
6/j.msec.2008.08.036
[72]. Teoh, S. H. (2000). Fatigue of biomaterials: A review.
International Journal of Fatigue, 22(10), 825-837. https://
doi.org/10.1016/S0142-1123(00)00052-9
[73]. Timonova, M. A. (1962). Intercrystalline Corrosion
and Corrosion of Metals Under Stress. New York:
Consultants Bureau.
[74]. Tudose, A. E., Demetrescu, I., Golgovici, F., & Fulger,
M. (2021). Oxidation behavior of an austenitic steel (Fe, Cr
and Ni), the 310 H, in a deaerated supercritical water
static system. Metals, 11(4), 571. https://doi.org/10.3390/
met11040571
[75]. Upadhyay, D., Panchal, M. A., Dubey, R. S., &
Srivastava, V. K. (2006). Corrosion of alloys used in
dentistry: A review. Materials Science and Engineering: A,
432(1-2), 1-11. https://doi.org/10.1016/j.msea.2006.05.
003
[76]. Virtanen, S., Milošev, I., Gomez-Barrena, E., Trebše,
R., Salo, J., & Konttinen, Y. T. (2008). Special modes of
corrosion under physiological and simulated physiological
conditions. Acta Biomaterialia, 4(3), 468-476. https:// doi.org/10.1016/j.actbio.2007.12.003
[77]. Walkowiak, B., Jakubowski, W., Okroj, W.,
Kochmanska, V., & Kroliczak, V. (2001, June). Interaction
of body fluids with carbon surfaces. In 3rd International
Conference'Novel Applications of Wide Bandgap Layers'
Abstract Book (pp. 75-76). IEEE. https://doi.org/10.1109/
WBL.2001.946551
[78]. Wang, M. (2003). Developing novel biomaterials for
new challenges. In Materials Science and Technology in
Engineering Conference-Now, New and Next, The Hong
Kong Institution of Engineers, Hong Kong.
[79]. Wang, Z., Cong, Y., Zhang, T., Shao, Y., & Meng, G.
(2011). Study on the crevice corrosion behavior of 316L
stainless steel used on marine gas turbine inlet filters by
stochastic methods. International Journal of Electrochemical
Science, 6, 5521-5538.
[80]. Williams, D. F. (1988). Consensus and definitions in
biomaterials. In C. de Putter, G. L. de Lange, K. de Groot, A.
J. C. Lee. (Ed.), Advances in Biomaterials (pp. 11–16),
Elsevier Science Publishers, Amsterdam.
[81]. Williams, R. L., Brown, S. A., & Merritt, K. (1988).
Electrochemical studies on the influence of proteins on
the corrosion of implant alloys. Biomaterials, 9(2), 181-
186. https://doi.org/10.1016/0142-9612(88)90119-6
[82]. Witte, F., Hort, N., Vogt, C., Cohen, S., Kainer, K. U.,
Willumeit, R., & Feyerabend, F. (2008). Degradable
biomaterials based on magnesium corrosion. Current
Opinion in Solid State and Materials Science, 12(5-6), 63-
72. https://doi.org/10.1016/j.cossms.2009.04.001
[83]. Zlotnik, S., Maltez-da Costa, M., Barroca, N.,
Hortigüela, M. J., Singh, M. K., Fernandes, M. H. V., &
Vilarinho, P. M. (2019). Functionalized-ferroelectriccoating-
driven enhanced biomineralization and proteinconformation
on metallic implants. Journal of Materials
Chemistry B, 7(13), 2177-2189. https://doi.org/10.1039/
C8TB02777C