The cloud computing environment allows for the sharing of highly scalable hardware and software resources over the internet. Virtual Machines (VM) allow the cloud provider to share hardware resources with cloud clients. Co-resident VMs are Virtual Machines (VMs) that run on the same physical server. The Virtual Machines in Co-Residence are logically separated from one another. The harmful users' side channels compromise the logical isolation. Co-resident attacks are described as unauthorized users accessing sensitive information from Co-resident VMs. Malicious users gain access to critical information such as cryptographic keys, workloads, and web traffic rates. Co-location, co-residence, and coresidency threats are all terms used to describe a Co-resident attack. The Virtual Machine allocation policy is used to determine where the Virtual Machines should be placed on the physical server. The malicious user co-locates their Virtual Machine with the target Virtual Machine. The Virtual Machine deployment procedure takes into account security, workload balancing, and power consumption criteria. Secure metrics are defined to assess the VM allocation policy's security. The Balanced VM Allocation Policy is designed to distribute virtual machines among physical servers. With security metrics, the Previous Selected Server First (PSSF) policy is applied. With the workload balance parameter, the least VM allocation policy, most VM allocation policy, and random allocation policy are applied. Within the same environment, the data centres are connected to the Virtual Machines. With centralised and distributed scheduling algorithms, the attack-resistant Virtual Machine Management framework is built. Side channel attacks are prevented during live VM transfer. Multiple data centre management mechanisms have been added to the system. To allocate virtual machines on the physical server, the Distributed VM Placement (DVMP) policy is created.