References
[1]. Chen, H., & Tian, J. (2011, August). Using particle swarm
optimization algorithm for image enhancement. In 2011,
International Conference on Uncertainty Reasoning and
Knowledge Engineering (Vol. 1, pp. 154-157). IEEE. https://
doi.org/10.1109/URKE.2011.6007823
[2]. Coelho, L. S., Sauer, J. G., & Rudek, M. (2009).
Differential evolution optimization combined with chaotic
sequences for image contrast enhancement. Chaos,
Solitons & Fractals, 42(1), 522-529. https://doi.org/10.1016/ j.chaos.2009.01.012
[3]. Gorai, A., & Ghosh, A. (2009, December). Gray-level
image enhancement by particle swarm optimization. In
2009, World Congress on Nature & Biologically Inspired
Computing (NaBIC) (pp. 72-77). IEEE. https://doi.org/10.1
109/NABIC.2009.5393603
[4]. Hanmadlu, M., Arora, S., Gupta, G., & Singh, L. (2013,
August). A novel optimal fuzzy color image enhancement
using particle swarm optimization. In 2013, Sixth
International Conference on Contemporary Computing
(IC3) (pp. 41-46). IEEE. https://doi.org/10.1109/IC3.2013.66
12237
[5]. Hashemi, S., Kiani, S., Noroozi, N., & Moghaddam, M.
E. (2010). An image contrast enhancement method
based on genetic algorithm. Pattern Recognition Letters,
31(13), 1816-1824. https://doi.org/10.1016/j.patrec.2009.
12.006
[6]. Lei, X., Hu, Q., Kong, X., & Xiong, T. (2014). Image
enhancement using hybrid intelligent optimization. Optics
& Optoelec- tronic Technology, 341–344.
[7]. Merugumalla, M. K., &Navuri, P. K. (2016). Sensorless
control of BLDC motor using bio-inspired optimization
algorithm and classical methods of tuning PID controller.
i-manager's Journal on Instrumentation & Control
Engineering, 5(1), 16-23. https://doi.org/10.26634/jic.5.1.
10349
[8]. Merugumalla, M. K., & Navuri, P. K. (2018). Population
Algorithms for optimal control of BLDC motor drive. HELIX,
8(3), 3350-3355.
[9]. Merugumalla, M. K., & Navuri, P. K. (2019). Inertia weight strategies in PSO for BLDC motor drive control. In
Microelectronics, Electromagnetics and Telecommunications
(pp. 475-484). Springer, Singapore. https://doi.org/10.100
7/978-981-13-1906-8_49
[10]. Munteanu, C., & Rosa, A. (2004). Gray-scale image
enhancement as an automatic process driven by
evolution. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (cybernetics), 34(2), 1292-1298. https://
doi.org/10.1109/TSMCB.2003.818533
[11]. Pal, S. K., Bhandari, D., & Kundu, M. K. (1994). Genetic
algorithms for optimal image enhancement. Pattern
Recognition Letters, 15(3), 261-271. https://doi.org/10.10
16/0167-8655(94)90058-2
[12]. Saitoh, F. (1999, October). Image contrast
enhancement using genetic algorithm. In IEEE SMC'99
Conference Proceedings. 1999 IEEE International
Conference on Systems, Man, and Cybernetics (Cat. No.
99CH37028) (Vol. 4, pp. 899-904). IEEE. https://doi.org/10.
1109/ICSMC.1999.812529
[13]. Sarangi, P. P., Mishra, B. S. P., Majhi, B., & Dehuri, S.
(2014, February). Gray-level image enhancement using
differential evolution optimization algorithm. In 2014,
International Conference on Signal Processing and
Integrated Networks (SPIN) (pp. 95-100). IEEE. https://doi.
org/10.1109/SPIN.2014.6776929
[14]. Zimmerman, J. B., Pizer, S. M., Staab, E. V., Perry, J. R.,
McCartney, W., & Brenton, B. C. (1988). An evaluation of
the effectiveness of adaptive histogram equalization for
contrast enhancement. IEEE Transactions on Medical
Imaging, 7(4), 304-312. https://doi.org/10.1109/42.14513