A Comprehensive Review on Enzymatic Reaction Conditions

N. Sunil Naik*, K. Gurumurthy**
*-** Department of Mechanical Engineering, Lakireddy Bali Reddy College of Engineering (A), Mylavaram, Andhra Pradesh, India.
Periodicity:July - September'2021
DOI : https://doi.org/10.26634/jms.9.2.18428

Abstract

Biofuels have drawn much attention of researchers in the last few decades due to the escalating cost of crude oils and its upcoming crisis in future. However, based upon the current situation much of research witnessed towards enzymatic transesterification has shown better outcome in terms of yield rate compared with that of the conventional transesterification process. Lipases are more attractive and can be extracted from any living organisms. The present work reviews the literature regarding the usage of different enzymes for transesterification and its optimum reaction conditions. This review is bound to investigate the performance of several lipases concerning varied reaction conditions which are obtained from various sources for biodiesel synthesis.

Keywords

Enzymatic Transesterification, Conventional Transesterification, Lipases, Optimum Reaction Conditions, Biodiesel Synthesis.

How to Cite this Article?

Naik, N. S., and Gurumurthy, K. (2021). A Comprehensive Review on Enzymatic Reaction Conditions. i-manager's Journal on Material Science , 9(2), 23-35. https://doi.org/10.26634/jms.9.2.18428

References

[1]. Abd Manan, F. M., Abd Rahman, I. N., Marzuki, N. H. C., Mahat, N. A., Huyop, F., & Wahab, R. A. (2016). Statistical modelling of Eugenol Benzoate synthesis using Rhizomucor miehei lipase reinforced nanobioconjugates. Process Biochemistry, 51(2), 249-262. https://doi.org/10. 1016/j.procbio.2015.12.002
[2]. Abdulla, R., & Ravindra, P. (2013). Immobilized Burkholderia cepacia lipase for biodiesel production from crude Jatropha curcas L. oil. Biomass and Bioenergy, 56, 8-13. https://doi.org/10.1016/j.biombioe.2013.04.010
[3]. Adewale, P., Dumont, M. J., & Ngadi, M. (2015). Enzyme-catalyzed synthesis and kinetics of ultrasonicassisted biodiesel production from waste tallow. Ultrasonics Sonochemistry, 27, 1-9. https://doi.org/10.1016/j.ultsonch. 2015.04.032
[4]. Al-Zuhair, S., Hussein, A., Al-Marzouqi, A. H., & Hashim, I. (2012). Continuous production of biodiesel from fat extracted from lamb meat in supercritical CO2 media. Biochemical Engineering Journal, 60, 106-110. https://doi. org/10.1016/j.bej.2011.10.010
[5]. Antczak, M. S., Kubiak, A., Antczak, T., & Bielecki, S. (2009). Enzymatic biodiesel synthesis–key factors affecting efficiency of the process. Renewable Energy, 34(5), 1185-1194. https://doi.org/10.1016/j.renene.2008.11.013
[6]. Anwar, F., Rashid, U., Ashraf, M., & Nadeem, M. (2010). Okra (Hibiscus esculentus) seed oil for biodiesel production. Applied Energy, 87(3), 779-785. https://doi.org/10.1016/j. apenergy.2009.09.020
[7]. Arai, S., Nakashima, K., Tanino, T., Ogino, C., Kondo, A., & Fukuda, H. (2010). Production of biodiesel fuel from soybean oil catalyzed by fungus whole-cell biocatalysts in ionic liquids. Enzyme and Microbial Technology, 46(1), 51-55. https://doi.org/10.1016/j.enzmictec.2009.08.008
[8]. Aransiola, E. F. (2013). Lipase catalysed ethanolysis of jatropha oil for biodiesel production. Energy and Environment Research, 3(1), 85-92. https://doi.org/10.55 39/eer.v3n1p85
[9]. Arumugam, A., & Ponnusami, V. (2014). Biodiesel production from Calophylluminophyllum oil using lipase producing Rhizopus oryzae cells immobilized within reticulated foams. Renewable Energy, 64, 276-282. https:// doi.org/10.1016/j.renene.2013.11.016
[10]. Atadashi, I. M., Aroua, M. K., Aziz, A. A., & Sulaiman, N. M. N. (2012). Production of biodiesel using high free fatty acid feedstocks. Renewable and Sustainable Energy Reviews, 16(5), 3275-3285. https://doi.org/10.1016/j.rser. 2012.02.063
[11]. Ayaz, B., Ugur, A., & Boran, R. (2015). Purification and characterization of organic solvent-tolerant lipase from Streptomyces sp. OC119-7 for biodiesel production. Biocatalysis and Agricultural Biotechnology, 4(1), 103-108. https://doi.org/10.1016/j.bcab.2014.11.007
[12]. Bajaj, A., Lohan, P., Jha, P. N., & Mehrotra, R. (2010). Biodiesel production through lipase catalyzed transesterification: an overview. Journal of Molecular Catalysis B: Enzymatic, 62(1), 9-14. https://doi.org/10.1016/ j.molcatb.2009.09.018
[13]. Baron, A. M., Barouh, N., Barea, B., Villeneuve, P., Mitchell, D. A., & Krieger, N. (2014). Transesterification of castor oil in a solvent-free medium using the lipase from Burkholderia cepacia LTEB11 immobilized on a hydrophobic s u p p o r t. Fu e l , 1 1 7 , 4 5 8 - 4 6 2 . h t t p s : / / d o i. o r g / 10.1016/j.fuel.2013.09.065
[14]. Calero, J., Luna, D., Luna, C., Bautista, F. M., Hurtado, B., Romero, A. A., ... & Estevez, R. (2019). Rhizomucor miehei Lipase Supported on Inorganic Solids, as Biocatalyst for the Synthesis of Biofuels: Improving the Experimental Conditions by Response Surface Methodology. Energies, 12(5), 831. https://doi.org/10.33 90/en12050831
[15]. Carvalho, A. K., Da Rós, P. C., Teixeira, L. F., Andrade, G. S., Zanin, G. M., & de Castro, H. F. (2013). Assessing the potential of non-edible oils and residual fat to be used as a feedstock source in the enzymatic ethanolysis reaction. Industrial Crops and Products, 50, 485-493. https://doi.org/ 10.1016/j.indcrop.2013.07.040
[16]. Chen, K. T., Wang, J. X., Dai, Y. M., Wang, P. H., Liou, C. Y., Nien, C. W., ... & Chen, C. C. (2013). Rice husk ash as a catalyst precursor for biodiesel production. Journal of the Taiwan Institute of Chemical Engineers, 44(4), 622-629. https://doi.org/10.1016/j.jtice.2013.01.006
[17]. Cocks, L. V., & Van Rede, C. (1966). Laboratory Handbook for Oil and Fat Analysts. Academic Press, Inc., London: New York.
[18]. de Oliveira, D., Di Luccio, M., Faccio, C., Dalla Rosa, C., Bender, J. P., Lipke, N., ... & de Oliveira, J. V. (2004). Optimization of enzymatic production of biodiesel from castor oil in organic solvent medium. In Proceedings of the Twenty-Fifth Symposium on Biotechnology for Fuels and Chemicals Held May 4–7, 2003, in Breckenridge, CO (pp. 771-780). Humana Press, Totowa, NJ. https://doi.org/10. 1007/978-1-59259-837-3_62
[19]. Dizge, N., & Keskinler, B. (2008). Enzymatic production of biodiesel from canola oil using immobilized lipase. Biomass and Bioenergy, 32(12), 1274-1278. https://doi.org/ 10.1016/j.biombioe.2008.03.005
[20]. Du, W., Xu, Y., Liu, D., & Zeng, J. (2004). Comparative study on lipase-catalyzed transformation of soybean oil for biodiesel production with different acyl acceptors. Journal of Molecular Catalysis B: Enzymatic, 30(3-4), 125-129. https://doi.org/10.1016/j.molcatb.2004.04.004
[21]. Duarte, S. H., Ghiselli, G., & Maugeri, F. (2013). Influence of culture conditions on lipid production by Candida sp. LEB-M3 using glycerol from biodiesel synthesis. Biocatalysis and Agricultural Biotechnology, 2(4), 339-343. https://doi.org/10.1016/j.bcab.2013.07.001
[22]. Facioli, N. L., & Barrera-Arellano, D. (2001). Optimisation of enzymatic esterification of soybean oil deodoriser distillate. Journal of the Science of Food and Agriculture, 81(12), 1193-1198. https://doi.org/10.1002/ jsfa.928
[23]. Gangadhara, R., & Prasad, N. (2016). Studies on optimization of transesterification of certain oils to produce biodiesel. Chem. Int, 2, 59.
[24]. Gog, A., Roman, M., Toşa, M., Paizs, C., & Irimie, F. D. (2012). Biodiesel production using enzymatic transesterification–current state and perspectives. Renewable Energy, 39(1), 10-16. https://doi.org/10.1016/j. renene.2011.08.007
[25]. Guldhe, A., Singh, P., Renuka, N., & Bux, F. (2019). Biodiesel synthesis from wastewater grown microalgal feedstock using enzymatic conversion: A greener approach. Fuel, 237, 1112-1118. https://doi.org/10.1016/j. fuel.2018.10.033
[26]. Helwani, Z., Othman, M. R., Aziz, N., Kim, J., & Fernando, W. J. N. (2009). Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. Applied Catalysis A: General, 363(1-2), 1-10. https:// doi.org/10.1016/j.apcata.2009.05.021
[27]. Huang, D., Han, S., Han, Z., & Lin, Y. (2012). Biodiesel production catalyzed by Rhizomucor miehei lipasedisplaying Pichia pastoris whole cells in an isooctane system. Biochemical Engineering Journal, 63, 10-14. https://doi.org/10.1016/j.bej.2010.08.009
[28]. Huang, J., Xia, J., Yang, Z., Guan, F., Cui, D., Guan, G., ... & Li, Y. (2014). Improved production of a recombinant Rhizomucor miehei lipase expressed in Pichia pastoris and its application for conversion of microalgae oil to biodiesel. Biotechnology for Biofuels, 7(1), 1-11. https:// doi.org/10.1186/1754-6834-7-111
[29]. Iso, M., Chen, B., Eguchi, M., Kudo, T., & Shrestha, S. (2001). Production of biodiesel fuel from triglycerides and alcohol using immobilized lipase. Journal of Molecular Catalysis B: Enzymatic, 16(1), 53-58. https://doi.org/10. 1016/S1381-1177(01)00045-5
[30]. Jang, M. G., Kim, D. K., Park, S. C., Lee, J. S., & Kim, S. W. (2012). Biodiesel production from crude canola oil by two-step enzymatic processes. Renewable Energy, 42, 99- 104. https://doi.org/10.1016/j.renene.2011.09.009
[31]. Jegannathan, K. R., Jun-Yee, L., Chan, E. S., & Ravindra, P. (2010). Production of biodiesel from palm oil using liquid core lipase encapsulated in κ-carrageenan. Fuel, 89(9), 2272-2277. https://doi.org/10.1016/j.fuel.2010. 03.016
[32]. Jiang, Y., Liu, X., Chen, Y., Zhou, L., He, Y., Ma, L., & Gao, J. (2014). Pickering emulsion stabilized by lipasecontaining periodic mesoporous organosilica particles: A robust biocatalyst system for biodiesel production. Bioresource Technology, 153, 278-283. https://doi.org/10. 1016/j.biortech.2013.12.001
[33]. Kaieda, M., Samukawa, T., Kondo, A., & Fukuda, H. (2001). Effect of methanol and water contents on production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. Journal of Bioscience and Bioengineering, 91(1), 12-15. https://doi. org/10.1016/S1389-1723(01)80103-1
[34]. Kawakami, K., Ueno, M., Takei, T., Oda, Y., & Takahashi, R. (2012). Application of a Burkholderia cepacia lipase-immobilized silica monolith micro-bioreactor to continuous-flow kinetic resolution for transesterification of (R, S)-1-phenylethanol. Process Biochemistry, 47(1), 147-150.
[35]. Kochepka, D. M., Dill, L. P., Couto, G. H., Krieger, N., & Ramos, L. P. (2015). Production of fatty acid ethyl esters from waste cooking oil using Novozym 435 in a solvent-free system. Energy & Fuels, 29(12), 8074-8081. https://doi.org/ 10.1021/acs.energyfuels.5b02116
[36]. Kumar, B. R., Saravanan, S., Kumar, R. N., Nishanth, B., Rana, D., & Nagendran, A. (2016). Effect of lignin-derived cyclohexanol on combustion, performance and emissions of a direct-injection agricultural diesel engine under naturally aspirated and exhaust gas recirculation (EGR) modes. Fuel, 181, 630-642. https://doi.org/10.1016/j.fuel. 2016.05.052
[37]. Kumar, D., Das, T., Giri, B. S., Rene, E. R., & Verma, B. (2019). Biodiesel production from hybrid non-edible oil using bio-support beads immobilized with lipase from Pseudomonas cepacia. Fuel, 255, 115801. https://doi.org/ 10.1016/j.fuel.2019.115801
[38]. Lai, C. C., Zullaikah, S., Vali, S. R., & Ju, Y. H. (2005). Lipase‐catalyzed production of biodiesel from rice bran oil. Journal of Chemical Technology & Biotechnology: International Research in Process, Environmental & Clean Technology, 80(3), 331-337. https://doi.org/10.1002/jctb. 1208
[39]. Lai, J. Q., Hu, Z. L., Wang, P. W., & Yang, Z. (2012). Enzymatic production of microalgal biodiesel in ionic liquid [BMIm][PF6]. Fuel, 95, 329-333. https://doi.org/10.1016/j. fuel.2011.11.001
[40]. Lee, D. H., Kim, J. M., Shin, H. Y., Kang, S. W., & Kim, S. W. (2006). Biodiesel production using a mixture of immobilized Rhizopus oryzae and Candida rugosa lipases. Biotechnology and Bioprocess Engineering, 11(6), 522- 525. https://doi.org/10.1007/BF02932077
[41]. Lee, J. H., Kim, S. B., Yoo, H. Y., Lee, J. H., Han, S. O., Park, C., & Kim, S. W. (2013a). Co-immobilization of Candida rugosa and Rhyzopus oryzae lipases and biodiesel production. Korean Journal of Chemical Engineering, 30(6), 1335-1338. https://doi.org/10.1007/s1 1814-013- 0058-z
[42]. Lee, O. K., Kim, Y. H., Na, J. G., Oh, Y. K., & Lee, E. Y. (2013b). Highly efficient extraction and lipase-catalyzed transesterification of triglycerides from Chlorella sp. KR-1 for production of biodiesel. Bioresource Technology, 147, 240- 245. https://doi.org/10.1016/j.biortech.2013.08.037
[43]. Li, J., Pan, J., Zhang, J., & Xu, J. H. (2014). Stereo selective synthesis of L-tert-leucine by a newly cloned leucine dehydrogenase from Exiguobacterium sibiricum. Journal of Molecular Catalysis B: Enzymatic, 105, 11-17. https://doi.org/10.1016/j.molcatb.2014.03.010
[44]. Li, L., Dyer, P. W., & Greenwell, H. C. (2018). Biodiesel production via trans-esterification using Pseudomonas cepacia immobilized on cellulosic polyurethane. ACS Omega, 3(6), 6804-6811. https://doi.org/10.1021/acsom ega.8b00110
[45]. Li, Q., & Yan, Y. (2010). Production of biodiesel catalyzed by immobilized Pseudomonas cepacia lipase from Sapiumsebiferum oil in micro-aqueous phase. Applied Energy, 87(10), 3148-3154. https://doi.org/10. 1016/j.apenergy.2010.02.032
[46]. Li, Q., Zheng, J., & Yan, Y. (2010). Biodiesel preparation catalyzed by compound-lipase in co-solvent. Fuel Processing Technology, 91(10), 1229-1234. https://doi.org/ 10.1016/j.fuproc.2010.04.002
[47]. Li, S. F., Fan, Y. H., Hu, R. F., & Wu, W. T. (2011a). Pseudomonas cepacia lipase immobilized onto the electrospun PAN nanofibrous membranes for biodiesel production from soybean oil. Journal of Molecular Catalysis B: Enzymatic, 72(1-2), 40-45. https://doi.org/10. 1016/j.molcatb.2011.04.022
[48]. Li, W. N., Chen, B. Q., & Tan, T. W. (2011b). Esterification synthesis of ethyl oleate in solvent-free system catalyzed by lipase membrane from fermentation broth. Applied Biochemistry and Biotechnology, 163(1), 102-111. https:// doi.org/10.1007/s12010-010-9020-2
[49]. Li, W., Du, W., & Liu, D. (2007a). Optimization of whole cell-catalyzed methanolysis of soybean oil for biodiesel production using response surface methodology. Journal of Molecular Catalysis B: Enzymatic, 45(3-4), 122-127. https://doi.org/10.1016/j.molcatb.2007.01.002
[50]. Li, X., He, X. Y., Li, Z. L., Wang, Y. D., Wang, C. Y., Shi, H., & Wang, F. (2012). Enzymatic production of biodiesel from Pistacia chinensis bge seed oil using immobilized lipase. Fuel, 92(1), 89-93. https://doi.org/10.1016/j.fuel.2011.06. 048
[51]. Li, X., Xu, H., & Wu, Q. (2007b). Large‐scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnology and Bioengineering, 98(4), 764-771. https://doi.org/10.1002/ bit.21489
[52]. Li, Z., Li, X., Wang, Y., Wang, Y., Wang, F., & Jiang, J. (2011). Expression and characterization of recombinant Rhizopus oryzae lipase for enzymatic biodiesel production. Bioresource Technology, 102(20), 9810-9813. https://doi. org/10.1016/j.biortech.2011.07.070
[53]. Liu, C. H., Huang, C. C., Wang, Y. W., Lee, D. J., & Chang, J. S. (2012). Biodiesel production by enzymatic transesterification catalyzed by Burkholderia lipase immobilized on hydrophobic magnetic particles. Applied Energy, 100, 41-46. https://doi.org/10.1016/j.apenergy. 2012.05.053
[54]. Liu, S., Nie, K., Zhang, X., Wang, M., Deng, L., Ye, X., ... & Tan, T. (2014). Kinetic study on lipase-catalyzed biodiesel production from waste cooking oil. Journal of Molecular Catalysis B: Enzymatic, 99, 43-50. https://doi.org/10.1016/j. molcatb.2013.10.009
[55]. Liu, Y., Li, C., Meng, X., & Yan, Y. (2013). Biodiesel synthesis directly catalyzed by the fermented solid of Burkholderia cenocepacia via solid state fermentation. Fuel Processing Technology, 106, 303-309. https://doi.org/ 10.1016/j.fuproc.2012.08.013
[56]. López, B. C., Cerdán, L. E., Medina, A. R., López, E. N., Valverde, L. M., Peña, E. H., ... & Grima, E. M. (2015). Production of biodiesel from vegetable oil and microalgae by fatty acid extraction and enzymatic esterification. Journal of Bioscience and Bioengineering, 119(6), 706-711. https://doi.org/10.1016/j.jbiosc.2014.11.002
[57]. Lu, J., Chen, Y., Wang, F., & Tan, T. (2009). Effect of water on methanolysis of glycerol trioleate catalyzed by immobilized lipase Candida sp. 99–125 in organic solvent system. Journal of Molecular Catalysis B: Enzymatic, 56(2- 3), 122-125. https://doi.org/10.1016/j.molcatb.2008.05. 004
[58]. Lu, J., Nie, K., Xie, F., Wang, F., & Tan, T. (2007). Enzymatic synthesis of fatty acid methyl esters from lard with immobilized Candida sp. 99-125. Process Biochemistry, 42(9), 1367-1370. https://doi.org/10.1016/j.procbio.2007. 06.004
[59]. Maleki, E., Aroua, M. K., & Sulaiman, N. M. N. (2013). Castor oil—a more suitable feedstock for enzymatic production of methyl esters. Fuel Processing Technology, 112, 129-132. https://doi.org/10.1016/j.fuproc.2013.03. 003
[60]. Marín-Suárez, M., Méndez-Mateos, D., Guadix, A., & Guadix, E. M. (2019). Reuse of immobilized lipases in the transesterification of waste fish oil for the production of biodiesel. Renewable Energy, 140, 1-8. https://doi.org/10. 1016/j.renene.2019.03.035
[61]. Marudhupandi, T., Gunasundari, V., Kumar, T. T. A., & Tissera, K. R. (2014). Influence of citrate on Chlorella vulgaris for biodiesel production. Biocatalysis and Agricultural Biotechnology, 3(4), 386-389. https://doi.org/10.1016/j. bcab.2014.03.008
[62]. Michelin, S., Penha, F. M., Sychoski, M. M., Scherer, R. P., Treichel, H., Valério, A., ... & Oliveira, J. V. (2015). Kinetics of ultrasound-assisted enzymatic biodiesel production from Macauba coconut oil. Renewable Energy, 76, 388- 393. https://doi.org/10.1016/j.renene.2014.11.067
[63]. Modi, M. K., Reddy, J. R. C., Rao, B. V. S. K., & Prasad, R. B. N. (2007). Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresource Technology, 98(6), 1260-1264. https://doi.org/ 10.1016/j.biortech.2006.05.006
[64]. Mustafa, A., Karmali, A., & Abdelmoez, W. (2016). Optimisation and economic assessment of lipasecatalysed production of monoesters using Rhizomucor miehei lipase in a solvent-free system. Journal of Cleaner Pro d u c t i o n , 1 3 7 , 9 5 3 - 9 6 4 . h t t p s : / / d o i. o r g / 1 0 . 1016/j.jclepro.2016.07.056
[65]. Nagesha, G. K., Manohar, B., & Sankar, K. U. (2004). Enzymatic esterification of free fatty acids of hydrolyzed soy deodorizer distillate in supercritical carbon dioxide. The Journal of supercritical fluids, 32(1-3), 137-145. https://doi. org/10.1016/j.supflu.2004.02.001
[66]. Naranjo, J. C., Córdoba, A., Giraldo, L., García, V. S., & Moreno-Piraján, J. C. (2010). Lipase supported on granular activated carbon and activated carbon cloth as a catalyst in the synthesis of biodiesel fuel. Journal of Molecular Catalysis B: Enzymatic, 66(1-2), 166-171. https:// doi.org/10.1016/j.molcatb.2010.05.002
[67]. Nielsen, P. M., Brask, J., & Fjerbaek, L. (2008). Enzymatic biodiesel production: technical and economical considerations. European Journal of Lipid Science and Technology, 110(8), 692-700. https://doi.org/ 10.1002/ejlt.200800064
[68]. Oliveira, A. C., & Rosa, M. F. (2006). Enzymatic transesterification of sunflower oil in an aqueous-oil biphasic system. Journal of the American Oil Chemists' Society, 83(1), 21-25. https://doi.org/10.1007/s11746-006- 1170-6
[69]. Qin, H. E., Yan, X. U., Yun, T. E. N. G., & Dong, W. A. N. G. (2008). Biodiesel production catalyzed by whole-cell lipase from Rhizopus chinensis. Chinese Journal of Catalysis, 29(1), 41-46. https://doi.org/10.1016/S1872-2067(08)60 015-7
[70]. Ragauskas, A. M. E., & A. J. R. (2013). Re-defining the future of FOG and biodiesel. J Pet Environ Biotechnol, 4(1).
[71]. Rahman, I. N. A., Attan, N., Mahat, N. A., Jamalis, J., Keyon, A. S. A., Kurniawan, C., & Wahab, R. A. (2018). Statistical optimization and operational stability of Rhizomucor miehei lipase supported on magnetic chitosan/chitin nanoparticles for synthesis of pentyl v a l e r a t e. I n t e r n a t i o n a l J o u r n a l o f B i o l o g i c a l Macromolecules, 115, 680-695. https://doi.org/10.1016/j. ijbiomac.2018.04.111
[72]. Rodrigues, J., Canet, A., Rivera, I., Osório, N. M., Sandoval, G., Valero, F., & Ferreira-Dias, S. (2016). Biodiesel production from crude Jatropha oil catalyzed by noncommercial immobilized heterologous Rhizopus oryzae and Carica papaya lipases. Bioresource Technology, 213, 88-95. https://doi.org/10.1016/j.biortech.2016.03.011
[73]. Rodrigues, R. C., & Ayub, M. A. Z. (2011). Effects of the combined use of Thermomyceslanuginosus and Rhizomucor miehei lipases for the transesterification and hydrolysis of soybean oil. Process Biochemistry, 46(3), 682- 688. https://doi.org/10.1016/j.procbio.2010.11.013
[74]. Rosset, I. G., Cavalheiro, M. C. H., Assaf, E. M., & Porto, A. L. (2013). Enzymatic esterification of oleic acid with aliphatic alcohols for the biodiesel production by Candida antarctica lipase. Catalysis Letters, 143(9), 863-872. https:// doi.org/10.1007/s10562-013-1044-0
[75]. Royon, D., Daz, M., Ellenrieder, G., & Locatelli, S. (2007). Enzymatic production of biodiesel from cotton seed oil using t-butanol as a solvent. Bioresource Technology, 98(3), 648-653. https://doi.org/10.1016/j.bior tech.2006.02.021
[76]. Sakai, S., Liu, Y., Yamaguchi, T., Watanabe, R., Kawabe, M., & Kawakami, K. (2010). Production of butylbiodiesel using lipase physically-adsorbed onto electrospun polyacr ylonitrile fibers. Bioresource Technology, 101(19), 7344-7349. https://doi.org/10.1016/j. biortech.2010.04.036
[77]. Salis, A., Pinna, M., Monduzzi, M., & Solinas, V. (2005). Biodiesel production from triolein and short chain alcohols through biocatalysis. Journal of Biotechnology, 119(3), 291-299. https://doi.org/10.1016/j.jbiotec.2005.04.009
[78]. Samukawa, T., Kaieda, M., Matsumoto, T., Ban, K., Kondo, A., Shimada, Y., ... & Fukuda, H. (2000). Pretreatment of immobilized Candida antarctica lipase for biodiesel fuel production from plant oil. Journal of Bioscience and Bioengineering, 90(2), 180-183. https:// doi.org/10.1016/S1389-1723(00)80107-3
[79]. Sani, Y. M., Daud, W. M. A. W., & Aziz, A. A. (2013). Solid acid-catalyzed biodiesel production from microalgal oil—The dual advantage. Journal of Environmental Chemical Engineering, 1(3), 113-121. https://doi.org/10. 1016%2Fj.jece.2013.04.006
[80]. Santalla, E., Serra, E., Mayoral, A., Losada, J., Blanco, R. M., & Díaz, I. (2011). In-situ immobilization of enzymes in mesoporous silicas. Solid State Sciences, 13(4), 691-697. https://doi.org/10.1016/j.solidstatesciences.2010.09.015
[81]. Shah, S., & Gupta, M. N. (2007). Lipase catalyzed preparation of biodiesel from Jatropha oil in a solvent free system. Process Biochemistry, 42(3), 409-414. https://doi. org/10.1016/j.procbio.2006.09.024
[82]. Shao, P., Meng, X., He, J., & Sun, P. (2008). Analysis of immobilized Candida rugosa lipase catalyzed preparation of biodiesel from rapeseed soapstock. Food and Bioproducts Processing, 86(4), 283-289. https://doi.org/10. 1016/j.fbp.2008.02.004
[83]. Sharma, Y. C., & Singh, B. (2009). Development of biodiesel: current scenario. Renewable and Sustainable Energy Reviews, 13(6-7), 1646-1651. https://doi.org/10. 1016/j.rser.2008.08.009
[84]. Shieh, C. J., Liao, H. F., & Lee, C. C. (2003). Optimization of lipase-catalyzed biodiesel by response surface methodology. Bioresource Technology, 88(2), 103- 106. https://doi.org/10.1016/S0960-8524(02)00292-4
[85]. Sim, J. H., Kamaruddin, A. H., & Bhatia, S. (2010). Biodiesel (FAME) productivity, catalytic efficiency and thermal stability of lipozyme TL IM for crude palm oil transesterification with methanol. Journal of the American Oil Chemists' Society, 87(9), 1027-1034. https://doi.org/10. 1007/s11746-010-1593-y
[86]. Soumanou, M. M., & Bornscheuer, U. T. (2003). Improvement in lipase-catalyzed synthesis of fatty acid methyl esters from sunflower oil. Enzyme and Microbial Technology, 33(1), 97-103. https://doi.org/10.1016/S0141- 0229(03)00090-5
[87]. Souza, M. S., Aguieiras, E. C., da Silva, M. A., & Langone, M. A. (2009). Biodiesel synthesis via esterification of feedstock with high content of free fatty acids. Applied Biochemistry and Biotechnology, 154(1-3), 74-88. https:// doi.org/10.1007/s12010-008-8444-4
[88]. Su, F., Peng, C., Li, G. L., Xu, L., & Yan, Y. J. (2016). Biodiesel production from woody oil catalyzed by Candida rugosa lipase in ionic liquid. Renewable Energy, 90, 329- 335. https://doi.org/10.1016/j.renene.2016.01.029
[89]. Sunitha, S., Kanjilal, S., Reddy, P. S., & Prasad, R. B. N. (2007). Ionic liquids as a reaction medium for lipase- catalyzed methanolysis of sunflower oil. Biotechnology Letters, 29(12), 1881-1885. https://doi.org/10.1007/s1052 9-007-9471-x
[90]. Talukder, M. M. R., Wu, J. C., & Chua, L. P. L. (2010a). Conversion of waste cooking oil to biodiesel via enzymatic hydrolysis followed by chemical esterification. Energy & Fuels, 24(3), 2016-2019. https://doi.org/10.1021/ef9011824
[91]. Talukder, M. M. R., Wu, J. C., Fen, N. M., & Melissa, Y. L. S. (2010b). Two-step lipase catalysis for production of biodiesel. Biochemical Engineering Journal, 49(2), 207- 212. https://doi.org/10.1016/j.bej.2009.12.015
[92]. Tamalampudi, S., Talukder, M. R., Hama, S., Numata, T., Kondo, A., & Fukuda, H. (2008). Enzymatic production of biodiesel from Jatropha oil: a comparative study of immobilized-whole cell and commercial lipases as a biocatalyst. Biochemical Engineering Journal, 39(1), 185- 189. https://doi.org/10.1016/j.bej.2007.09.002
[93]. Tan, T., Nie, K., & Wang, F. (2006). Production of biodiesel by immobilized Candida sp. lipase at high water content. Applied Biochemistry and Biotechnology, 128(2), 109-116. https://doi.org/10.1385/ABAB:128:2:109
[94]. Ting, W. J., Huang, C. M., Giridhar, N., & Wu, W. T. (2008). An enzymatic/acid-catalyzed hybrid process for biodiesel production from soybean oil. Journal of the Chinese Institute of Chemical Engineers, 39(3), 203-210. https://doi.org/10.1016/j.jcice.2008.01.004
[95]. Tongboriboon, K., Cheirsilp, B., & Aran, H. (2010). Mixed lipases for efficient enzymatic synthesis of biodiesel from used palm oil and ethanol in a solvent-free system. Journal of Molecular Catalysis B: Enzymatic, 67(1-2), 52- 59. https://doi.org/10.1016/j.molcatb.2010.07.005
[96]. Tosa, T., Mori, T., Fuse, N., & Chibata, I. (1966). Studies on continuous enzyme reactions. I. Screening of carriers for preparation of water-insoluble aminoacylase. Enzymologia, 31(4), 214-224.
[97]. Trentin, C. M., Scherer, R. P., Dalla Rosa, C., Treichel, H., Oliveira, D., & Oliveira, J. V. (2014). Continuous lipasecatalyzed esterification of soybean fatty acids under ultrasound irradiation. Bioprocess and Biosystems Engineering, 37(5), 841-847. https://doi.org/10.1007/s00 449-013-1052-x
[98]. Ungcharoenwiwat, P., Canyuk, B., & Aran, H. (2016). Synthesis of jatropha oil-based wax esters using an immobilized lipase from Burkholderia sp. EQ3 and Lipozyme RM IM. Process Biochemistry, 51(3), 392-398.
[99]. Vipin, V. C., Sebastian, J., Muraleedharan, C., & Santhiagu, A. (2016). Enzymatic transesterification of rubber seed oil using Rhizopus oryzae lipase. Procedia Technology, 25, 1014-1021. https://doi.org/10.1016/j. protcy.2016.08.201
[100]. von der Haar, D., Stäbler, A., Wichmann, R., & Schweiggert-Weisz, U. (2015). Enzymatic esterification of free fatty acids in vegetable oils utilizing different immobilized lipases. Biotechnology Letters, 37(1), 169-174. https://doi.org/10.1007/s10529-014-1668-1
[101]. Wang, M., Nie, K., Cao, H., Deng, L., Wang, F., & Tan, T. (2014). Biodiesel production by combined fatty acids separation and subsequently enzymatic esterification to improve the low temperature properties. Bioresource Technology, 174, 302-305. https://doi.org/10.1016/j.bior tech.2014.08.011
[102]. Wang, Y. D., Shen, X. Y., Li, Z. L., Li, X., Wang, F., Nie, X. A., & Jiang, J. C. (2010). Immobilized recombinant Rhizopus oryzae lipase for the production of biodiesel in solvent free system. Journal of Molecular Catalysis B: Enzymatic, 67(1-2), 45-51. https://doi.org/10.1016/j.mol catb.2010.07.004
[103]. Watanabe, Y., Nagao, T., Nishida, Y., Takagi, Y., & Shimada, Y. (2007). Enzymatic production of fatty acid methyl esters by hydrolysis of acid oil followed by esterification. Journal of the American Oil Chemists' Society, 84(11), 1015-1021. https://doi.org/10.1007/s1174 6-007-1143-4
[104]. Woo, C., Kook, S., Rogers, P., Marquis, C., Hawkes, E., & Tupufia, S. (2015). A comparative analysis on engine performance of a conventional diesel fuel and 10% biodiesel blends produced from coconut oils. SAE International Journal of Fuels and Lubricants, 8(3), 597- 609.
[105]. Xie, W., & Huang, M. (2018). Immobilization of Candida rugosa lipase onto graphene oxide Fe3O4 nanocomposite: Characterization and application for biodiesel production. Energy Conversion and Management, 159, 42-53. https://doi.org/10.1016/j.en conman.2018.01.021
[106]. Xie, W., & Ma, N. (2010). Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass and Bioenergy, 34(6), 890-896. https://doi.org/10.1016/j.biom bioe.2010.01.034
[107]. Xie, W., & Wang, J. (2012). Immobilized lipase on magnetic chitosan microspheres for transesterification of soybean oil. Biomass and Bioenergy, 36, 373-380. https:// doi.org/10.1016/j.biombioe.2011.11.006
[108]. Xu, Y., Du, W., Zeng, J., & Liu, D. (2004). Conversion of soybean oil to biodiesel fuel using lipozyme TL IM in a solvent-free medium. Biocatalysis and Biotransformation, 22(1), 45-48. https://doi.org/10.1080/1024242041000166 1222
[109]. Yan, Y., Li, X., Wang, G., Gui, X., Li, G., Su, F., ... & Liu, T. (2014). Biotechnological preparation of biodiesel and its high-valued derivatives: A review. Applied Energy, 113, 1614-1631. https://doi.org/10.1016/j.apenergy.2013.09. 029
[110]. Yan, Y., Xu, L., & Dai, M. (2012). A synergetic wholecell biocatalyst for biodiesel production. RSC Advances, 2(15), 6170-6173. https://doi.org/10.1039/C2RA20974H
[111]. You, Q., Yin, X., Zhao, Y., & Zhang, Y. (2013). Biodiesel production from jatropha oil catalyzed by immobilized Burkholderia cepacia lipase on modified attapulgite. Bioresource Technology, 148, 202-207. https://doi.org/10. 1016/j.biortech.2013.08.143
[112]. Zenevicz, M. C. P., Jacques, A., de Oliveira, D., Furigo Jr, A., Valério, A., & Oliveira, J. V. (2017). A two-step enzymatic strategy to produce ethyl esters using frying oil as substrate. Industrial Crops and Products, 108, 52-55. https://doi.org/10.1016/j.indcrop.2017.06.018
[113]. Zhang, L., Sun, S., Xin, Z., Sheng, B., & Liu, Q. (2010). Synthesis and component confirmation of biodiesel from palm oil and dimethyl carbonate catalyzed by immobilized-lipase in solvent-free system. Fuel, 89(12), 3960-3965. https://doi.org/10.1016/j.fuel.2010.06.030
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.