References
[1]. Abd Manan, F. M., Abd Rahman, I. N., Marzuki, N. H. C.,
Mahat, N. A., Huyop, F., & Wahab, R. A. (2016). Statistical
modelling of Eugenol Benzoate synthesis using Rhizomucor
miehei lipase reinforced nanobioconjugates. Process
Biochemistry, 51(2), 249-262. https://doi.org/10.
1016/j.procbio.2015.12.002
[2]. Abdulla, R., & Ravindra, P. (2013). Immobilized
Burkholderia cepacia lipase for biodiesel production from
crude Jatropha curcas L. oil. Biomass and Bioenergy, 56, 8-13. https://doi.org/10.1016/j.biombioe.2013.04.010
[3]. Adewale, P., Dumont, M. J., & Ngadi, M. (2015). Enzyme-catalyzed synthesis and kinetics of ultrasonicassisted
biodiesel production from waste tallow. Ultrasonics
Sonochemistry, 27, 1-9. https://doi.org/10.1016/j.ultsonch.
2015.04.032
[4]. Al-Zuhair, S., Hussein, A., Al-Marzouqi, A. H., & Hashim, I.
(2012). Continuous production of biodiesel from fat
extracted from lamb meat in supercritical CO2 media.
Biochemical Engineering Journal, 60, 106-110. https://doi.
org/10.1016/j.bej.2011.10.010
[5]. Antczak, M. S., Kubiak, A., Antczak, T., & Bielecki, S.
(2009). Enzymatic biodiesel synthesis–key factors affecting
efficiency of the process. Renewable Energy, 34(5), 1185-1194. https://doi.org/10.1016/j.renene.2008.11.013
[6]. Anwar, F., Rashid, U., Ashraf, M., & Nadeem, M. (2010).
Okra (Hibiscus esculentus) seed oil for biodiesel production.
Applied Energy, 87(3), 779-785. https://doi.org/10.1016/j.
apenergy.2009.09.020
[7]. Arai, S., Nakashima, K., Tanino, T., Ogino, C., Kondo, A.,
& Fukuda, H. (2010). Production of biodiesel fuel from
soybean oil catalyzed by fungus whole-cell biocatalysts in
ionic liquids. Enzyme and Microbial Technology, 46(1), 51-55. https://doi.org/10.1016/j.enzmictec.2009.08.008
[8]. Aransiola, E. F. (2013). Lipase catalysed ethanolysis of
jatropha oil for biodiesel production. Energy and
Environment Research, 3(1), 85-92. https://doi.org/10.55
39/eer.v3n1p85
[9]. Arumugam, A., & Ponnusami, V. (2014). Biodiesel
production from Calophylluminophyllum oil using lipase producing Rhizopus oryzae cells immobilized within
reticulated foams. Renewable Energy, 64, 276-282. https://
doi.org/10.1016/j.renene.2013.11.016
[10]. Atadashi, I. M., Aroua, M. K., Aziz, A. A., & Sulaiman, N.
M. N. (2012). Production of biodiesel using high free fatty
acid feedstocks. Renewable and Sustainable Energy
Reviews, 16(5), 3275-3285. https://doi.org/10.1016/j.rser.
2012.02.063
[11]. Ayaz, B., Ugur, A., & Boran, R. (2015). Purification and
characterization of organic solvent-tolerant lipase from
Streptomyces sp. OC119-7 for biodiesel production.
Biocatalysis and Agricultural Biotechnology, 4(1), 103-108.
https://doi.org/10.1016/j.bcab.2014.11.007
[12]. Bajaj, A., Lohan, P., Jha, P. N., & Mehrotra, R. (2010).
Biodiesel production through lipase catalyzed
transesterification: an overview. Journal of Molecular
Catalysis B: Enzymatic, 62(1), 9-14. https://doi.org/10.1016/
j.molcatb.2009.09.018
[13]. Baron, A. M., Barouh, N., Barea, B., Villeneuve, P.,
Mitchell, D. A., & Krieger, N. (2014). Transesterification of
castor oil in a solvent-free medium using the lipase from
Burkholderia cepacia LTEB11 immobilized on a hydrophobic
s u p p o r t. Fu e l , 1 1 7 , 4 5 8 - 4 6 2 . h t t p s : / / d o i. o r g /
10.1016/j.fuel.2013.09.065
[14]. Calero, J., Luna, D., Luna, C., Bautista, F. M., Hurtado,
B., Romero, A. A., ... & Estevez, R. (2019). Rhizomucor miehei
Lipase Supported on Inorganic Solids, as Biocatalyst for the
Synthesis of Biofuels: Improving the Experimental
Conditions by Response Surface Methodology. Energies,
12(5), 831. https://doi.org/10.33 90/en12050831
[15]. Carvalho, A. K., Da Rós, P. C., Teixeira, L. F., Andrade,
G. S., Zanin, G. M., & de Castro, H. F. (2013). Assessing the
potential of non-edible oils and residual fat to be used as a
feedstock source in the enzymatic ethanolysis reaction.
Industrial Crops and Products, 50, 485-493. https://doi.org/
10.1016/j.indcrop.2013.07.040
[16]. Chen, K. T., Wang, J. X., Dai, Y. M., Wang, P. H., Liou, C.
Y., Nien, C. W., ... & Chen, C. C. (2013). Rice husk ash as a
catalyst precursor for biodiesel production. Journal of the
Taiwan Institute of Chemical Engineers, 44(4), 622-629.
https://doi.org/10.1016/j.jtice.2013.01.006
[17]. Cocks, L. V., & Van Rede, C. (1966). Laboratory
Handbook for Oil and Fat Analysts. Academic Press, Inc.,
London: New York.
[18]. de Oliveira, D., Di Luccio, M., Faccio, C., Dalla Rosa,
C., Bender, J. P., Lipke, N., ... & de Oliveira, J. V. (2004).
Optimization of enzymatic production of biodiesel from
castor oil in organic solvent medium. In Proceedings of the
Twenty-Fifth Symposium on Biotechnology for Fuels and
Chemicals Held May 4–7, 2003, in Breckenridge, CO (pp.
771-780). Humana Press, Totowa, NJ. https://doi.org/10.
1007/978-1-59259-837-3_62
[19]. Dizge, N., & Keskinler, B. (2008). Enzymatic production
of biodiesel from canola oil using immobilized lipase.
Biomass and Bioenergy, 32(12), 1274-1278. https://doi.org/
10.1016/j.biombioe.2008.03.005
[20]. Du, W., Xu, Y., Liu, D., & Zeng, J. (2004). Comparative
study on lipase-catalyzed transformation of soybean oil for
biodiesel production with different acyl acceptors. Journal
of Molecular Catalysis B: Enzymatic, 30(3-4), 125-129.
https://doi.org/10.1016/j.molcatb.2004.04.004
[21]. Duarte, S. H., Ghiselli, G., & Maugeri, F. (2013).
Influence of culture conditions on lipid production by
Candida sp. LEB-M3 using glycerol from biodiesel synthesis.
Biocatalysis and Agricultural Biotechnology, 2(4), 339-343.
https://doi.org/10.1016/j.bcab.2013.07.001
[22]. Facioli, N. L., & Barrera-Arellano, D. (2001).
Optimisation of enzymatic esterification of soybean oil
deodoriser distillate. Journal of the Science of Food and
Agriculture, 81(12), 1193-1198. https://doi.org/10.1002/
jsfa.928
[23]. Gangadhara, R., & Prasad, N. (2016). Studies on
optimization of transesterification of certain oils to produce
biodiesel. Chem. Int, 2, 59.
[24]. Gog, A., Roman, M., Toşa, M., Paizs, C., & Irimie, F. D.
(2012). Biodiesel production using enzymatic
transesterification–current state and perspectives.
Renewable Energy, 39(1), 10-16. https://doi.org/10.1016/j.
renene.2011.08.007
[25]. Guldhe, A., Singh, P., Renuka, N., & Bux, F. (2019).
Biodiesel synthesis from wastewater grown microalgal
feedstock using enzymatic conversion: A greener approach. Fuel, 237, 1112-1118. https://doi.org/10.1016/j.
fuel.2018.10.033
[26]. Helwani, Z., Othman, M. R., Aziz, N., Kim, J., &
Fernando, W. J. N. (2009). Solid heterogeneous catalysts
for transesterification of triglycerides with methanol: a
review. Applied Catalysis A: General, 363(1-2), 1-10. https://
doi.org/10.1016/j.apcata.2009.05.021
[27]. Huang, D., Han, S., Han, Z., & Lin, Y. (2012). Biodiesel
production catalyzed by Rhizomucor miehei lipasedisplaying
Pichia pastoris whole cells in an isooctane system.
Biochemical Engineering Journal, 63, 10-14.
https://doi.org/10.1016/j.bej.2010.08.009
[28]. Huang, J., Xia, J., Yang, Z., Guan, F., Cui, D., Guan,
G., ... & Li, Y. (2014). Improved production of a
recombinant Rhizomucor miehei lipase expressed in Pichia
pastoris and its application for conversion of microalgae oil
to biodiesel. Biotechnology for Biofuels, 7(1), 1-11. https://
doi.org/10.1186/1754-6834-7-111
[29]. Iso, M., Chen, B., Eguchi, M., Kudo, T., & Shrestha, S.
(2001). Production of biodiesel fuel from triglycerides and
alcohol using immobilized lipase. Journal of Molecular
Catalysis B: Enzymatic, 16(1), 53-58. https://doi.org/10.
1016/S1381-1177(01)00045-5
[30]. Jang, M. G., Kim, D. K., Park, S. C., Lee, J. S., & Kim, S.
W. (2012). Biodiesel production from crude canola oil by
two-step enzymatic processes. Renewable Energy, 42, 99-
104. https://doi.org/10.1016/j.renene.2011.09.009
[31]. Jegannathan, K. R., Jun-Yee, L., Chan, E. S., &
Ravindra, P. (2010). Production of biodiesel from palm oil
using liquid core lipase encapsulated in κ-carrageenan.
Fuel, 89(9), 2272-2277. https://doi.org/10.1016/j.fuel.2010.
03.016
[32]. Jiang, Y., Liu, X., Chen, Y., Zhou, L., He, Y., Ma, L., &
Gao, J. (2014). Pickering emulsion stabilized by lipasecontaining
periodic mesoporous organosilica particles: A
robust biocatalyst system for biodiesel production.
Bioresource Technology, 153, 278-283. https://doi.org/10.
1016/j.biortech.2013.12.001
[33]. Kaieda, M., Samukawa, T., Kondo, A., & Fukuda, H.
(2001). Effect of methanol and water contents on
production of biodiesel fuel from plant oil catalyzed by various lipases in a solvent-free system. Journal of
Bioscience and Bioengineering, 91(1), 12-15. https://doi.
org/10.1016/S1389-1723(01)80103-1
[34]. Kawakami, K., Ueno, M., Takei, T., Oda, Y., &
Takahashi, R. (2012). Application of a Burkholderia cepacia
lipase-immobilized silica monolith micro-bioreactor to
continuous-flow kinetic resolution for transesterification of
(R, S)-1-phenylethanol. Process Biochemistry, 47(1), 147-150.
[35]. Kochepka, D. M., Dill, L. P., Couto, G. H., Krieger, N., &
Ramos, L. P. (2015). Production of fatty acid ethyl esters from
waste cooking oil using Novozym 435 in a solvent-free
system. Energy & Fuels, 29(12), 8074-8081. https://doi.org/
10.1021/acs.energyfuels.5b02116
[36]. Kumar, B. R., Saravanan, S., Kumar, R. N., Nishanth, B.,
Rana, D., & Nagendran, A. (2016). Effect of lignin-derived
cyclohexanol on combustion, performance and emissions
of a direct-injection agricultural diesel engine under
naturally aspirated and exhaust gas recirculation (EGR)
modes. Fuel, 181, 630-642. https://doi.org/10.1016/j.fuel.
2016.05.052
[37]. Kumar, D., Das, T., Giri, B. S., Rene, E. R., & Verma, B.
(2019). Biodiesel production from hybrid non-edible oil
using bio-support beads immobilized with lipase from
Pseudomonas cepacia. Fuel, 255, 115801. https://doi.org/
10.1016/j.fuel.2019.115801
[38]. Lai, C. C., Zullaikah, S., Vali, S. R., & Ju, Y. H. (2005).
Lipase‐catalyzed production of biodiesel from rice bran oil.
Journal of Chemical Technology & Biotechnology:
International Research in Process, Environmental & Clean
Technology, 80(3), 331-337. https://doi.org/10.1002/jctb.
1208
[39]. Lai, J. Q., Hu, Z. L., Wang, P. W., & Yang, Z. (2012).
Enzymatic production of microalgal biodiesel in ionic liquid
[BMIm][PF6]. Fuel, 95, 329-333. https://doi.org/10.1016/j.
fuel.2011.11.001
[40]. Lee, D. H., Kim, J. M., Shin, H. Y., Kang, S. W., & Kim, S.
W. (2006). Biodiesel production using a mixture of
immobilized Rhizopus oryzae and Candida rugosa lipases.
Biotechnology and Bioprocess Engineering, 11(6), 522-
525. https://doi.org/10.1007/BF02932077
[41]. Lee, J. H., Kim, S. B., Yoo, H. Y., Lee, J. H., Han, S. O.,
Park, C., & Kim, S. W. (2013a). Co-immobilization of
Candida rugosa and Rhyzopus oryzae lipases and biodiesel
production. Korean Journal of Chemical Engineering,
30(6), 1335-1338. https://doi.org/10.1007/s1 1814-013-
0058-z
[42]. Lee, O. K., Kim, Y. H., Na, J. G., Oh, Y. K., & Lee, E. Y.
(2013b). Highly efficient extraction and lipase-catalyzed
transesterification of triglycerides from Chlorella sp. KR-1 for
production of biodiesel. Bioresource Technology, 147, 240-
245. https://doi.org/10.1016/j.biortech.2013.08.037
[43]. Li, J., Pan, J., Zhang, J., & Xu, J. H. (2014). Stereo
selective synthesis of L-tert-leucine by a newly cloned
leucine dehydrogenase from Exiguobacterium sibiricum.
Journal of Molecular Catalysis B: Enzymatic, 105, 11-17.
https://doi.org/10.1016/j.molcatb.2014.03.010
[44]. Li, L., Dyer, P. W., & Greenwell, H. C. (2018). Biodiesel
production via trans-esterification using Pseudomonas
cepacia immobilized on cellulosic polyurethane. ACS
Omega, 3(6), 6804-6811. https://doi.org/10.1021/acsom
ega.8b00110
[45]. Li, Q., & Yan, Y. (2010). Production of biodiesel
catalyzed by immobilized Pseudomonas cepacia lipase
from Sapiumsebiferum oil in micro-aqueous phase.
Applied Energy, 87(10), 3148-3154. https://doi.org/10.
1016/j.apenergy.2010.02.032
[46]. Li, Q., Zheng, J., & Yan, Y. (2010). Biodiesel preparation
catalyzed by compound-lipase in co-solvent. Fuel
Processing Technology, 91(10), 1229-1234. https://doi.org/
10.1016/j.fuproc.2010.04.002
[47]. Li, S. F., Fan, Y. H., Hu, R. F., & Wu, W. T. (2011a).
Pseudomonas cepacia lipase immobilized onto the
electrospun PAN nanofibrous membranes for biodiesel
production from soybean oil. Journal of Molecular
Catalysis B: Enzymatic, 72(1-2), 40-45. https://doi.org/10.
1016/j.molcatb.2011.04.022
[48]. Li, W. N., Chen, B. Q., & Tan, T. W. (2011b). Esterification
synthesis of ethyl oleate in solvent-free system catalyzed by
lipase membrane from fermentation broth. Applied
Biochemistry and Biotechnology, 163(1), 102-111. https://
doi.org/10.1007/s12010-010-9020-2
[49]. Li, W., Du, W., & Liu, D. (2007a). Optimization of whole
cell-catalyzed methanolysis of soybean oil for biodiesel
production using response surface methodology. Journal
of Molecular Catalysis B: Enzymatic, 45(3-4), 122-127.
https://doi.org/10.1016/j.molcatb.2007.01.002
[50]. Li, X., He, X. Y., Li, Z. L., Wang, Y. D., Wang, C. Y., Shi, H.,
& Wang, F. (2012). Enzymatic production of biodiesel from
Pistacia chinensis bge seed oil using immobilized lipase.
Fuel, 92(1), 89-93. https://doi.org/10.1016/j.fuel.2011.06.
048
[51]. Li, X., Xu, H., & Wu, Q. (2007b). Large‐scale biodiesel
production from microalga Chlorella protothecoides through
heterotrophic cultivation in bioreactors. Biotechnology and
Bioengineering, 98(4), 764-771. https://doi.org/10.1002/
bit.21489
[52]. Li, Z., Li, X., Wang, Y., Wang, Y., Wang, F., & Jiang, J.
(2011). Expression and characterization of recombinant
Rhizopus oryzae lipase for enzymatic biodiesel production.
Bioresource Technology, 102(20), 9810-9813. https://doi.
org/10.1016/j.biortech.2011.07.070
[53]. Liu, C. H., Huang, C. C., Wang, Y. W., Lee, D. J., &
Chang, J. S. (2012). Biodiesel production by enzymatic
transesterification catalyzed by Burkholderia lipase
immobilized on hydrophobic magnetic particles. Applied
Energy, 100, 41-46. https://doi.org/10.1016/j.apenergy.
2012.05.053
[54]. Liu, S., Nie, K., Zhang, X., Wang, M., Deng, L., Ye, X., ...
& Tan, T. (2014). Kinetic study on lipase-catalyzed biodiesel
production from waste cooking oil. Journal of Molecular
Catalysis B: Enzymatic, 99, 43-50. https://doi.org/10.1016/j.
molcatb.2013.10.009
[55]. Liu, Y., Li, C., Meng, X., & Yan, Y. (2013). Biodiesel
synthesis directly catalyzed by the fermented solid of
Burkholderia cenocepacia via solid state fermentation. Fuel
Processing Technology, 106, 303-309. https://doi.org/
10.1016/j.fuproc.2012.08.013
[56]. López, B. C., Cerdán, L. E., Medina, A. R., López, E. N.,
Valverde, L. M., Peña, E. H., ... & Grima, E. M. (2015).
Production of biodiesel from vegetable oil and microalgae
by fatty acid extraction and enzymatic esterification.
Journal of Bioscience and Bioengineering, 119(6), 706-711. https://doi.org/10.1016/j.jbiosc.2014.11.002
[57]. Lu, J., Chen, Y., Wang, F., & Tan, T. (2009). Effect of
water on methanolysis of glycerol trioleate catalyzed by
immobilized lipase Candida sp. 99–125 in organic solvent
system. Journal of Molecular Catalysis B: Enzymatic, 56(2-
3), 122-125. https://doi.org/10.1016/j.molcatb.2008.05.
004
[58]. Lu, J., Nie, K., Xie, F., Wang, F., & Tan, T. (2007).
Enzymatic synthesis of fatty acid methyl esters from lard with
immobilized Candida sp. 99-125. Process Biochemistry,
42(9), 1367-1370. https://doi.org/10.1016/j.procbio.2007.
06.004
[59]. Maleki, E., Aroua, M. K., & Sulaiman, N. M. N. (2013).
Castor oil—a more suitable feedstock for enzymatic
production of methyl esters. Fuel Processing Technology,
112, 129-132. https://doi.org/10.1016/j.fuproc.2013.03.
003
[60]. Marín-Suárez, M., Méndez-Mateos, D., Guadix, A., &
Guadix, E. M. (2019). Reuse of immobilized lipases in the
transesterification of waste fish oil for the production of
biodiesel. Renewable Energy, 140, 1-8. https://doi.org/10.
1016/j.renene.2019.03.035
[61]. Marudhupandi, T., Gunasundari, V., Kumar, T. T. A., &
Tissera, K. R. (2014). Influence of citrate on Chlorella vulgaris
for biodiesel production. Biocatalysis and Agricultural
Biotechnology, 3(4), 386-389. https://doi.org/10.1016/j.
bcab.2014.03.008
[62]. Michelin, S., Penha, F. M., Sychoski, M. M., Scherer, R.
P., Treichel, H., Valério, A., ... & Oliveira, J. V. (2015). Kinetics
of ultrasound-assisted enzymatic biodiesel production
from Macauba coconut oil. Renewable Energy, 76, 388-
393. https://doi.org/10.1016/j.renene.2014.11.067
[63]. Modi, M. K., Reddy, J. R. C., Rao, B. V. S. K., & Prasad,
R. B. N. (2007). Lipase-mediated conversion of vegetable
oils into biodiesel using ethyl acetate as acyl acceptor.
Bioresource Technology, 98(6), 1260-1264. https://doi.org/
10.1016/j.biortech.2006.05.006
[64]. Mustafa, A., Karmali, A., & Abdelmoez, W. (2016).
Optimisation and economic assessment of lipasecatalysed
production of monoesters using Rhizomucor
miehei lipase in a solvent-free system. Journal of Cleaner Pro d u c t i o n , 1 3 7 , 9 5 3 - 9 6 4 . h t t p s : / / d o i. o r g / 1 0 .
1016/j.jclepro.2016.07.056
[65]. Nagesha, G. K., Manohar, B., & Sankar, K. U. (2004).
Enzymatic esterification of free fatty acids of hydrolyzed soy
deodorizer distillate in supercritical carbon dioxide. The
Journal of supercritical fluids, 32(1-3), 137-145. https://doi.
org/10.1016/j.supflu.2004.02.001
[66]. Naranjo, J. C., Córdoba, A., Giraldo, L., García, V. S.,
& Moreno-Piraján, J. C. (2010). Lipase supported on
granular activated carbon and activated carbon cloth as
a catalyst in the synthesis of biodiesel fuel. Journal of
Molecular Catalysis B: Enzymatic, 66(1-2), 166-171. https://
doi.org/10.1016/j.molcatb.2010.05.002
[67]. Nielsen, P. M., Brask, J., & Fjerbaek, L. (2008).
Enzymatic biodiesel production: technical and
economical considerations. European Journal of Lipid
Science and Technology, 110(8), 692-700. https://doi.org/
10.1002/ejlt.200800064
[68]. Oliveira, A. C., & Rosa, M. F. (2006). Enzymatic
transesterification of sunflower oil in an aqueous-oil
biphasic system. Journal of the American Oil Chemists'
Society, 83(1), 21-25. https://doi.org/10.1007/s11746-006-
1170-6
[69]. Qin, H. E., Yan, X. U., Yun, T. E. N. G., & Dong, W. A. N. G.
(2008). Biodiesel production catalyzed by whole-cell lipase
from Rhizopus chinensis. Chinese Journal of Catalysis, 29(1),
41-46. https://doi.org/10.1016/S1872-2067(08)60 015-7
[70]. Ragauskas, A. M. E., & A. J. R. (2013). Re-defining the
future of FOG and biodiesel. J Pet Environ Biotechnol, 4(1).
[71]. Rahman, I. N. A., Attan, N., Mahat, N. A., Jamalis, J.,
Keyon, A. S. A., Kurniawan, C., & Wahab, R. A. (2018).
Statistical optimization and operational stability of
Rhizomucor miehei lipase supported on magnetic
chitosan/chitin nanoparticles for synthesis of pentyl
v a l e r a t e. I n t e r n a t i o n a l J o u r n a l o f B i o l o g i c a l
Macromolecules, 115, 680-695. https://doi.org/10.1016/j.
ijbiomac.2018.04.111
[72]. Rodrigues, J., Canet, A., Rivera, I., Osório, N. M.,
Sandoval, G., Valero, F., & Ferreira-Dias, S. (2016). Biodiesel
production from crude Jatropha oil catalyzed by noncommercial
immobilized heterologous Rhizopus oryzae and
Carica papaya lipases. Bioresource Technology, 213,
88-95. https://doi.org/10.1016/j.biortech.2016.03.011
[73]. Rodrigues, R. C., & Ayub, M. A. Z. (2011). Effects of the
combined use of Thermomyceslanuginosus and
Rhizomucor miehei lipases for the transesterification and
hydrolysis of soybean oil. Process Biochemistry, 46(3), 682-
688. https://doi.org/10.1016/j.procbio.2010.11.013
[74]. Rosset, I. G., Cavalheiro, M. C. H., Assaf, E. M., & Porto,
A. L. (2013). Enzymatic esterification of oleic acid with
aliphatic alcohols for the biodiesel production by Candida
antarctica lipase. Catalysis Letters, 143(9), 863-872. https://
doi.org/10.1007/s10562-013-1044-0
[75]. Royon, D., Daz, M., Ellenrieder, G., & Locatelli, S.
(2007). Enzymatic production of biodiesel from cotton
seed oil using t-butanol as a solvent. Bioresource
Technology, 98(3), 648-653. https://doi.org/10.1016/j.bior
tech.2006.02.021
[76]. Sakai, S., Liu, Y., Yamaguchi, T., Watanabe, R.,
Kawabe, M., & Kawakami, K. (2010). Production of butylbiodiesel
using lipase physically-adsorbed onto
electrospun polyacr ylonitrile fibers. Bioresource
Technology, 101(19), 7344-7349. https://doi.org/10.1016/j.
biortech.2010.04.036
[77]. Salis, A., Pinna, M., Monduzzi, M., & Solinas, V. (2005).
Biodiesel production from triolein and short chain alcohols
through biocatalysis. Journal of Biotechnology, 119(3),
291-299. https://doi.org/10.1016/j.jbiotec.2005.04.009
[78]. Samukawa, T., Kaieda, M., Matsumoto, T., Ban, K.,
Kondo, A., Shimada, Y., ... & Fukuda, H. (2000).
Pretreatment of immobilized Candida antarctica lipase for
biodiesel fuel production from plant oil. Journal of
Bioscience and Bioengineering, 90(2), 180-183. https://
doi.org/10.1016/S1389-1723(00)80107-3
[79]. Sani, Y. M., Daud, W. M. A. W., & Aziz, A. A. (2013). Solid
acid-catalyzed biodiesel production from microalgal
oil—The dual advantage. Journal of Environmental
Chemical Engineering, 1(3), 113-121. https://doi.org/10.
1016%2Fj.jece.2013.04.006
[80]. Santalla, E., Serra, E., Mayoral, A., Losada, J., Blanco,
R. M., & Díaz, I. (2011). In-situ immobilization of enzymes in
mesoporous silicas. Solid State Sciences, 13(4), 691-697. https://doi.org/10.1016/j.solidstatesciences.2010.09.015
[81]. Shah, S., & Gupta, M. N. (2007). Lipase catalyzed
preparation of biodiesel from Jatropha oil in a solvent free
system. Process Biochemistry, 42(3), 409-414. https://doi.
org/10.1016/j.procbio.2006.09.024
[82]. Shao, P., Meng, X., He, J., & Sun, P. (2008). Analysis of
immobilized Candida rugosa lipase catalyzed preparation
of biodiesel from rapeseed soapstock. Food and
Bioproducts Processing, 86(4), 283-289. https://doi.org/10.
1016/j.fbp.2008.02.004
[83]. Sharma, Y. C., & Singh, B. (2009). Development of
biodiesel: current scenario. Renewable and Sustainable
Energy Reviews, 13(6-7), 1646-1651. https://doi.org/10.
1016/j.rser.2008.08.009
[84]. Shieh, C. J., Liao, H. F., & Lee, C. C. (2003).
Optimization of lipase-catalyzed biodiesel by response
surface methodology. Bioresource Technology, 88(2), 103-
106. https://doi.org/10.1016/S0960-8524(02)00292-4
[85]. Sim, J. H., Kamaruddin, A. H., & Bhatia, S. (2010).
Biodiesel (FAME) productivity, catalytic efficiency and
thermal stability of lipozyme TL IM for crude palm oil
transesterification with methanol. Journal of the American
Oil Chemists' Society, 87(9), 1027-1034. https://doi.org/10.
1007/s11746-010-1593-y
[86]. Soumanou, M. M., & Bornscheuer, U. T. (2003).
Improvement in lipase-catalyzed synthesis of fatty acid
methyl esters from sunflower oil. Enzyme and Microbial
Technology, 33(1), 97-103. https://doi.org/10.1016/S0141-
0229(03)00090-5
[87]. Souza, M. S., Aguieiras, E. C., da Silva, M. A., &
Langone, M. A. (2009). Biodiesel synthesis via esterification
of feedstock with high content of free fatty acids. Applied
Biochemistry and Biotechnology, 154(1-3), 74-88. https://
doi.org/10.1007/s12010-008-8444-4
[88]. Su, F., Peng, C., Li, G. L., Xu, L., & Yan, Y. J. (2016).
Biodiesel production from woody oil catalyzed by Candida
rugosa lipase in ionic liquid. Renewable Energy, 90, 329-
335. https://doi.org/10.1016/j.renene.2016.01.029
[89]. Sunitha, S., Kanjilal, S., Reddy, P. S., & Prasad, R. B. N.
(2007). Ionic liquids as a reaction medium for lipase- catalyzed methanolysis of sunflower oil. Biotechnology
Letters, 29(12), 1881-1885. https://doi.org/10.1007/s1052
9-007-9471-x
[90]. Talukder, M. M. R., Wu, J. C., & Chua, L. P. L. (2010a).
Conversion of waste cooking oil to biodiesel via enzymatic
hydrolysis followed by chemical esterification. Energy & Fuels,
24(3), 2016-2019. https://doi.org/10.1021/ef9011824
[91]. Talukder, M. M. R., Wu, J. C., Fen, N. M., & Melissa, Y. L.
S. (2010b). Two-step lipase catalysis for production of
biodiesel. Biochemical Engineering Journal, 49(2), 207-
212. https://doi.org/10.1016/j.bej.2009.12.015
[92]. Tamalampudi, S., Talukder, M. R., Hama, S., Numata,
T., Kondo, A., & Fukuda, H. (2008). Enzymatic production of
biodiesel from Jatropha oil: a comparative study of
immobilized-whole cell and commercial lipases as a
biocatalyst. Biochemical Engineering Journal, 39(1), 185-
189. https://doi.org/10.1016/j.bej.2007.09.002
[93]. Tan, T., Nie, K., & Wang, F. (2006). Production of
biodiesel by immobilized Candida sp. lipase at high water
content. Applied Biochemistry and Biotechnology, 128(2),
109-116. https://doi.org/10.1385/ABAB:128:2:109
[94]. Ting, W. J., Huang, C. M., Giridhar, N., & Wu, W. T.
(2008). An enzymatic/acid-catalyzed hybrid process for
biodiesel production from soybean oil. Journal of the
Chinese Institute of Chemical Engineers, 39(3), 203-210.
https://doi.org/10.1016/j.jcice.2008.01.004
[95]. Tongboriboon, K., Cheirsilp, B., & Aran, H. (2010).
Mixed lipases for efficient enzymatic synthesis of biodiesel
from used palm oil and ethanol in a solvent-free system.
Journal of Molecular Catalysis B: Enzymatic, 67(1-2), 52-
59. https://doi.org/10.1016/j.molcatb.2010.07.005
[96]. Tosa, T., Mori, T., Fuse, N., & Chibata, I. (1966). Studies
on continuous enzyme reactions. I. Screening of carriers for
preparation of water-insoluble aminoacylase.
Enzymologia, 31(4), 214-224.
[97]. Trentin, C. M., Scherer, R. P., Dalla Rosa, C., Treichel,
H., Oliveira, D., & Oliveira, J. V. (2014). Continuous lipasecatalyzed
esterification of soybean fatty acids under
ultrasound irradiation. Bioprocess and Biosystems
Engineering, 37(5), 841-847. https://doi.org/10.1007/s00
449-013-1052-x
[98]. Ungcharoenwiwat, P., Canyuk, B., & Aran, H. (2016).
Synthesis of jatropha oil-based wax esters using an
immobilized lipase from Burkholderia sp. EQ3 and Lipozyme
RM IM. Process Biochemistry, 51(3), 392-398.
[99]. Vipin, V. C., Sebastian, J., Muraleedharan, C., &
Santhiagu, A. (2016). Enzymatic transesterification of
rubber seed oil using Rhizopus oryzae lipase. Procedia
Technology, 25, 1014-1021. https://doi.org/10.1016/j.
protcy.2016.08.201
[100]. von der Haar, D., Stäbler, A., Wichmann, R., &
Schweiggert-Weisz, U. (2015). Enzymatic esterification of
free fatty acids in vegetable oils utilizing different
immobilized lipases. Biotechnology Letters, 37(1), 169-174.
https://doi.org/10.1007/s10529-014-1668-1
[101]. Wang, M., Nie, K., Cao, H., Deng, L., Wang, F., & Tan,
T. (2014). Biodiesel production by combined fatty acids
separation and subsequently enzymatic esterification to
improve the low temperature properties. Bioresource
Technology, 174, 302-305. https://doi.org/10.1016/j.bior
tech.2014.08.011
[102]. Wang, Y. D., Shen, X. Y., Li, Z. L., Li, X., Wang, F., Nie, X.
A., & Jiang, J. C. (2010). Immobilized recombinant
Rhizopus oryzae lipase for the production of biodiesel in
solvent free system. Journal of Molecular Catalysis B:
Enzymatic, 67(1-2), 45-51. https://doi.org/10.1016/j.mol
catb.2010.07.004
[103]. Watanabe, Y., Nagao, T., Nishida, Y., Takagi, Y., &
Shimada, Y. (2007). Enzymatic production of fatty acid
methyl esters by hydrolysis of acid oil followed by
esterification. Journal of the American Oil Chemists'
Society, 84(11), 1015-1021. https://doi.org/10.1007/s1174
6-007-1143-4
[104]. Woo, C., Kook, S., Rogers, P., Marquis, C., Hawkes, E.,
& Tupufia, S. (2015). A comparative analysis on engine
performance of a conventional diesel fuel and 10%
biodiesel blends produced from coconut oils. SAE
International Journal of Fuels and Lubricants, 8(3), 597-
609.
[105]. Xie, W., & Huang, M. (2018). Immobilization of
Candida rugosa lipase onto graphene oxide Fe3O4
nanocomposite: Characterization and application for biodiesel production. Energy Conversion and
Management, 159, 42-53. https://doi.org/10.1016/j.en
conman.2018.01.021
[106]. Xie, W., & Ma, N. (2010). Enzymatic
transesterification of soybean oil by using immobilized
lipase on magnetic nano-particles. Biomass and
Bioenergy, 34(6), 890-896. https://doi.org/10.1016/j.biom
bioe.2010.01.034
[107]. Xie, W., & Wang, J. (2012). Immobilized lipase on
magnetic chitosan microspheres for transesterification of
soybean oil. Biomass and Bioenergy, 36, 373-380. https://
doi.org/10.1016/j.biombioe.2011.11.006
[108]. Xu, Y., Du, W., Zeng, J., & Liu, D. (2004). Conversion of
soybean oil to biodiesel fuel using lipozyme TL IM in a
solvent-free medium. Biocatalysis and Biotransformation,
22(1), 45-48. https://doi.org/10.1080/1024242041000166
1222
[109]. Yan, Y., Li, X., Wang, G., Gui, X., Li, G., Su, F., ... & Liu, T.
(2014). Biotechnological preparation of biodiesel and its
high-valued derivatives: A review. Applied Energy, 113, 1614-1631. https://doi.org/10.1016/j.apenergy.2013.09.
029
[110]. Yan, Y., Xu, L., & Dai, M. (2012). A synergetic wholecell
biocatalyst for biodiesel production. RSC Advances,
2(15), 6170-6173. https://doi.org/10.1039/C2RA20974H
[111]. You, Q., Yin, X., Zhao, Y., & Zhang, Y. (2013). Biodiesel
production from jatropha oil catalyzed by immobilized
Burkholderia cepacia lipase on modified attapulgite.
Bioresource Technology, 148, 202-207. https://doi.org/10.
1016/j.biortech.2013.08.143
[112]. Zenevicz, M. C. P., Jacques, A., de Oliveira, D.,
Furigo Jr, A., Valério, A., & Oliveira, J. V. (2017). A two-step
enzymatic strategy to produce ethyl esters using frying oil
as substrate. Industrial Crops and Products, 108, 52-55.
https://doi.org/10.1016/j.indcrop.2017.06.018
[113]. Zhang, L., Sun, S., Xin, Z., Sheng, B., & Liu, Q. (2010).
Synthesis and component confirmation of biodiesel from
palm oil and dimethyl carbonate catalyzed by
immobilized-lipase in solvent-free system. Fuel, 89(12),
3960-3965. https://doi.org/10.1016/j.fuel.2010.06.030