Triple Band Diamond Shape Microstrip Patch Antenna for 2.7 GHz/7.38 GHz/8.58 GHz Application

Deepak Gupta *, Gaurav Gupta **, Akanksha Gupta ***
*-** Department of Electrical Engineering, Faculty of Engineering and Technology, University of Lucknow, Uttar Pradesh, India.
*** Department of Electronics and Communication Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi, Uttar Pradesh, India.
Periodicity:January - June'2021
DOI : https://doi.org/10.26634/jwcn.9.2.18398

Abstract

The advancement in wireless communication technology has accelerated the use of patch antenna in the field of microwave and millimeter wave applications. This paper work illustrates the design and measurement of diamond shape microstrip antenna for 2.7/7.36/8.58 GHz applications. The antenna has been designed and simulated using Zeland IE3D 9.08 microwave simulator. The proposed structure consists of a rectangular ground plane, on which the rectangular section is rotated at an angle of 45°, which looks like a diamond-shaped section, in which diamond-shaped slots are incorporated, and the antenna is split into two parts at a gap of 0.5 mm to improve impedance bandwidth using slotted coupling. The bandwidth of the fractional impedance of the proposed antenna is 15%, 5.4% and 2.3%, respectively when simulated and 5.9%, 5.4% and 2.3% respectively, when measured with a maximum gain of 6 dBi.

Keywords

Diamond Shape, Gap Coupled, Zeland IE3D, Microstrip Antenna.

How to Cite this Article?

Gupta, D., Gupta, G., and Gupta, A. (2021). Triple Band Diamond Shape Microstrip Patch Antenna for 2.7 GHz/7.38 GHz/8.58 GHz Application. i-manager's Journal on Wireless Communication Networks, 9(2), 1-9. https://doi.org/10.26634/jwcn.9.2.18398

References

[1]. Ansari, J. A., & Ram, R. B. (2008). Analysis of a compact and broadband microstrip patch antenna. Microwave and Optical Technology Letters, 50(8), 2059-2063. https://doi.org/10.1002/mop.23573
[2]. Ansari, J. A., Yadav, N. P., Mishra, A., Singh, P., & Vishvakarma, B. R. (2012). Analysis of multilayer rectangular patch antenna for broadband operation. Wireless Personal Communications, 62(2), 315-327. https://doi.org/10.1007/s11277-010-0055-z
[3]. Asthana, A., & Vishvakarma, B. R. (2001). Analysis of gap-coupled microstrip antenna. International Journal of Electronics, 88(6), 707-718. https://doi.org/10.1080/ 00207210110037222
[4]. Chang, T. N., & Jiang, J. H. (2009). Enhance gain and bandwidth of circularly polarized microstrip patch antenna using gap-coupled method. Progress In Electromagnetics Research, 96, 127-139. https://doi.org/10.2528/PIER09081 010
[5]. Deshmukh, A. A., & Chavali, V. A. (2021). Wideband Pentagonal microstrip antenna using a pair of rectangular slots. Progress In Electromagnetics Research C, 107, 113- 126. https://doi.org/10.2528/PIERC20102602
[6]. Deshmukh, A. A., & Ray, K. P. (2011). Proximity-fed broadband rectangular microstrip antennas. Microwave and Optical Technology Letters, 53(2), 294-300. https://doi. org/10.1002/mop.25723
[7]. Gupta, S. K., Sharma, A., Kanaujia, B. K., & Pandey, G. P. (2014). Triple band circular patch microstrip antenna with superstrate. Wireless Personal Communications, 77(1), 395-410. https://doi.org/10.1007/s11277-013-1512-2
[8]. Kale, G. M., Labade, R. P., & Pawase, R. S. (2015). Open rectangular ring slot loaded rectangular microstrip antenna for dual frequency operation. Microwave and Optical Technology Letters, 57(10), 2448-2452. https://doi. org/10.1002/mop.29351
[9]. Kanaujia, B. K., & Singh, A. K. (2008). Analysis and design of gap-coupled annular ring microstrip antenna. International Journal of Antennas and Propagation, 2008, 1-5. https://doi.org/10.1155/2008/792123
[10]. Kandwal, A., Chakravarty, T., & Khah, S. K. (2012). Circuital method for admittance calculation of gap-coupled sectoral antennas. Microwave and Optical Technology Letters, 54(1), 210-213. https://doi.org/10. 1002/mop.26458
[11]. Kara, M. (1998). Design considerations for rectangular microstrip antenna elements with various substrate thicknesses. Microwave and Optical Technology Letters, 19(2), 111-121. https://doi.org/10.1002/(SICI)1098-2760 (19981005)19:2<111::AID-MOP8>3.0.CO;2-J
[12]. Kaur, J., & Khanna, R. (2014). Development of dualband microstrip patch antenna for WLAN/MIMO/ WIMAX/AMSAT/WAVE applications. Microwave and Optical Technology Letters, 56(4), 988-993. https://doi.org/ 10.1002/mop.28206
[13]. Kumar, P., & Singh, G. (2009). Theoretical investigation of the input impedance of gap-coupled circular microstrip patch antennas. Journal of Infrared, Millimeter, and Terahertz Waves, 30(11), 1148-1160. https://doi.org/10. 1007/s10762-009-9538-y
[14]. Mishra, B. (2019). An ultra compact triple band antenna for X/Ku/K band applications. Microwave and Optical Technology Letters, 61(7), 1857-1862. https://doi. org/10.1002/mop.31812
[15]. Mishra, B., Singh, V., & Rajeev, S. (2020). Gap-coupled H-shaped antenna for wireless applications. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 90(4), 725-737. https://doi.org/10.1007/ s40010-019-00631-6
[16]. Nour, A. A., Fezai, F., Thevenot, M., Arnaud, E., & Monediere, T. (2016). A circularly polarized square microstrip parasitic antenna with an improved bandwidth. Microwave and Optical Technology Letters, 58(3), 597- 602. https://doi.org/10.1002/mop.29625
[17]. Raheja, D. K., Kanaujia, B. K., & Kumar, S. (2018). A dual polarized triple band stacked elliptical microstrip patch antenna for WLAN applications. Wireless Personal Communications, 100(4), 1585-1599. https://doi.org/10. 1007/s11277-018-5655-z
[18]. Ray, K. P., Sevani, V., & Kulkarni, R. K. (2007). Gap coupled rectangular microstrip antennas for dual and triple frequency operation. Microwave and Optical Technology Letters, 49(6), 1480-1486. https://doi.org/10. 1002/mop.22452
[19]. Saxena, S., & Kannaujia, K. (2014). Bandwidth enhancement technique for gap coupled angular ring microstrip antenna using Gunn diode. International Journal of Electronics and Communication Engineering 4(1), 53-57.
[20]. Singh, V., Mishra, B., & Singh, R. (2019). Anchor shape gap coupled patch antenna for WiMAX and WLAN applications. COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 38(1), 263-286. https://doi.org/ 10.1108/COMPEL-12-2017-0546
[21]. Srivastava, D. K., Khanna, A., & Saini, J. P. (2016). Design of a wideband gap-coupled modified square fractal antenna. Journal of Computational Electronics, 15(1), 239-247. https://doi.org/10.1007/s10825-015-0740-y
[22]. Tripathi, S., Mohan, A., & Yadav, S. (2015). A compact UWB antenna with dual 3.5/5.5 GHz band-notched characteristics. Microwave and Optical Technology Letters, 57(3), 551-556. https://doi.org/10.1002/mop.28893
[23]. Tsai, L. C. (2014). A triple-band bow-tie-shaped CPWfed slot antenna for WLAN applications. Progress In Electromagnetics Research C, 47, 167-171. https://doi. org/10.2528/PIERC14011002
[24]. Tsai, L. C. (2014). Design of triple-band T–U-shaped CPW-FED slot antennas. Microwave and Optical Technology Letters, 56(4), 844-848. https://doi.org/10.10 02/mop.28199
[25]. Zhang, J., Lu, W. J., Li, L., Zhu, L., & Zhu, H. B. (2016). Wideband dual-mode planar endfire antenna with circular polarisation. Electronics Letters, 52(12), 1000-1001. https:// doi.org/10.1049/el.2016.0936
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.