References
[1]. Ansari, J. A., & Ram, R. B. (2008). Analysis of a compact and broadband microstrip patch antenna. Microwave and Optical Technology Letters, 50(8), 2059-2063. https://doi.org/10.1002/mop.23573
[2]. Ansari, J. A., Yadav, N. P., Mishra, A., Singh, P., & Vishvakarma, B. R. (2012). Analysis of multilayer rectangular patch antenna for broadband operation. Wireless Personal Communications, 62(2), 315-327. https://doi.org/10.1007/s11277-010-0055-z
[3]. Asthana, A., & Vishvakarma, B. R. (2001). Analysis of gap-coupled microstrip antenna. International Journal of Electronics, 88(6), 707-718. https://doi.org/10.1080/ 00207210110037222
[4]. Chang, T. N., & Jiang, J. H. (2009). Enhance gain and bandwidth of circularly polarized microstrip patch antenna using gap-coupled method. Progress In Electromagnetics Research, 96, 127-139. https://doi.org/10.2528/PIER09081 010
[5]. Deshmukh, A. A., & Chavali, V. A. (2021). Wideband Pentagonal microstrip antenna using a pair of rectangular slots. Progress In Electromagnetics Research C, 107, 113- 126. https://doi.org/10.2528/PIERC20102602
[6]. Deshmukh, A. A., & Ray, K. P. (2011). Proximity-fed broadband rectangular microstrip antennas. Microwave and Optical Technology Letters, 53(2), 294-300. https://doi. org/10.1002/mop.25723
[7]. Gupta, S. K., Sharma, A., Kanaujia, B. K., & Pandey, G. P. (2014). Triple band circular patch microstrip antenna with superstrate. Wireless Personal Communications, 77(1), 395-410. https://doi.org/10.1007/s11277-013-1512-2
[8]. Kale, G. M., Labade, R. P., & Pawase, R. S. (2015). Open rectangular ring slot loaded rectangular microstrip antenna for dual frequency operation. Microwave and Optical Technology Letters, 57(10), 2448-2452. https://doi. org/10.1002/mop.29351
[9]. Kanaujia, B. K., & Singh, A. K. (2008). Analysis and design of gap-coupled annular ring microstrip antenna. International Journal of Antennas and Propagation, 2008, 1-5. https://doi.org/10.1155/2008/792123
[10]. Kandwal, A., Chakravarty, T., & Khah, S. K. (2012). Circuital method for admittance calculation of gap-coupled sectoral antennas. Microwave and Optical Technology Letters, 54(1), 210-213. https://doi.org/10. 1002/mop.26458
[11]. Kara, M. (1998). Design considerations for rectangular microstrip antenna elements with various substrate thicknesses. Microwave and Optical Technology Letters, 19(2), 111-121. https://doi.org/10.1002/(SICI)1098-2760 (19981005)19:2<111::AID-MOP8>3.0.CO;2-J
[12]. Kaur, J., & Khanna, R. (2014). Development of dualband microstrip patch antenna for WLAN/MIMO/ WIMAX/AMSAT/WAVE applications. Microwave and Optical Technology Letters, 56(4), 988-993. https://doi.org/ 10.1002/mop.28206
[13]. Kumar, P., & Singh, G. (2009). Theoretical investigation of the input impedance of gap-coupled circular microstrip patch antennas. Journal of Infrared, Millimeter, and Terahertz Waves, 30(11), 1148-1160. https://doi.org/10. 1007/s10762-009-9538-y
[14]. Mishra, B. (2019). An ultra compact triple band antenna for X/Ku/K band applications. Microwave and Optical Technology Letters, 61(7), 1857-1862. https://doi. org/10.1002/mop.31812
[15]. Mishra, B., Singh, V., & Rajeev, S. (2020). Gap-coupled H-shaped antenna for wireless applications. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 90(4), 725-737. https://doi.org/10.1007/ s40010-019-00631-6
[16]. Nour, A. A., Fezai, F., Thevenot, M., Arnaud, E., & Monediere, T. (2016). A circularly polarized square microstrip parasitic antenna with an improved bandwidth. Microwave and Optical Technology Letters, 58(3), 597- 602. https://doi.org/10.1002/mop.29625
[17]. Raheja, D. K., Kanaujia, B. K., & Kumar, S. (2018). A dual polarized triple band stacked elliptical microstrip patch antenna for WLAN applications. Wireless Personal Communications, 100(4), 1585-1599. https://doi.org/10. 1007/s11277-018-5655-z
[18]. Ray, K. P., Sevani, V., & Kulkarni, R. K. (2007). Gap coupled rectangular microstrip antennas for dual and triple frequency operation. Microwave and Optical Technology Letters, 49(6), 1480-1486. https://doi.org/10. 1002/mop.22452
[19]. Saxena, S., & Kannaujia, K. (2014). Bandwidth enhancement technique for gap coupled angular ring microstrip antenna using Gunn diode. International Journal of Electronics and Communication Engineering 4(1), 53-57.
[20]. Singh, V., Mishra, B., & Singh, R. (2019). Anchor shape gap coupled patch antenna for WiMAX and WLAN applications. COMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 38(1), 263-286. https://doi.org/ 10.1108/COMPEL-12-2017-0546
[21]. Srivastava, D. K., Khanna, A., & Saini, J. P. (2016). Design of a wideband gap-coupled modified square fractal antenna. Journal of Computational Electronics, 15(1), 239-247. https://doi.org/10.1007/s10825-015-0740-y
[22]. Tripathi, S., Mohan, A., & Yadav, S. (2015). A compact UWB antenna with dual 3.5/5.5 GHz band-notched characteristics. Microwave and Optical Technology Letters, 57(3), 551-556. https://doi.org/10.1002/mop.28893
[23]. Tsai, L. C. (2014). A triple-band bow-tie-shaped CPWfed slot antenna for WLAN applications. Progress In Electromagnetics Research C, 47, 167-171. https://doi. org/10.2528/PIERC14011002
[24]. Tsai, L. C. (2014). Design of triple-band T–U-shaped CPW-FED slot antennas. Microwave and Optical Technology Letters, 56(4), 844-848. https://doi.org/10.10 02/mop.28199
[25]. Zhang, J., Lu, W. J., Li, L., Zhu, L., & Zhu, H. B. (2016). Wideband dual-mode planar endfire antenna with circular polarisation. Electronics Letters, 52(12), 1000-1001. https:// doi.org/10.1049/el.2016.0936