References
[1]. Adedoja, A., Owolawi, P. A., & Mapayi, T. (2019,
August). Deep learning based on NASNet for plant disease
recognition using leave images. In 2019, International
Conference On Advances In Big Data, Computing And
Data Communication Systems (icABCD) (pp. 1-5). IEEE.
https://doi.org/10.1109/ICABCD.2019.8851029
[2]. Ali, W. (2019). Plant Classification in Healthy and
Disease. Retrieved from https://github.com/waqas-ali/tf_
plant_disease_classification
[3]. Alon, A., & Dioses, J. L. (2020). Machine vision
recognition system for iceberg lettuce health condition on
raspberry pi 4b: A mobile net ssd v2 inference approach.
International Journal of Emerging Trends in Engineering
Research, 8(4), 1073-1078. https://doi.org/10.30534/ijeter/
2020/20842020
[4]. Atila, Ü., Uçar, M., Akyol, K., & Uçar, E. (2021). Plant leaf
disease classification using EfficientNet deep learning
model. Ecological Informatics, 61, 101182. https://doi.org/
10.1016/j.ecoinf.2020.101182
[5]. Calderone, L. (2019). What is Machine Vision?.
Robotics Tomorrow. Retrieved from https://www.robotics
tomorrow.com/article/2019/12/what-is-machine-vision/
14548
[6]. Chen, J., Chen, J., Zhang, D., Sun, Y., & Nanehkaran,
Y.A. (2020a). Using deep transfer learning for image-based
plant disease identification. Computers and Electronics in
Agriculture, 173. https://doi.org/10.1016/j.compag.2020.
105393
[7]. Chen, J., Zhang, D., Nanehkaran, Y. A., & Li, D. (2020b).
Detection of rice plant diseases based on deep transfer
learning. Journal of the Science of Food and Agriculture,
100(7), 3246-3256. https://doi.org/10.1002/jsfa.10365
[8]. Durmuş, H., Güneş, E. O., & Kırcı, M. (2017, August).
Disease detection on the leaves of the tomato plants by
using deep learning. In 2017, 6th International Conference
on Agro-Geoinformatics (pp. 1-5). IEEE. https://doi.org/
10.1109/Agro-Geoinformatics.2017.8047016
[9]. Hassim, S. A., & Chuah, J. H. (2020). Lettuce
classification using convolutional neural network. Food
Research, 4(6), 118-123. https://doi.org/10.26656/fr.2017.
4(S6).029
[10]. Joshi, R. C., Kaushik, M., Dutta, M. K., Srivastava, A., &
Choudhary, N. (2021). VirLeafNet: Automatic analysis and
viral disease diagnosis using deep-learning in Vigna
mungo plant. Ecological Informatics, 61, 101197. https://
doi.org/10.1016/j.ecoinf.2020.101197
[11]. Kouhalvandi, L., Gunes, E. O., & Ozoguz, S. (2019,
July). Algorithms for speeding-up the deep neural networks
for detecting plant disease. In 2019, 8th International
Conference on Agro-Geoinformatics (Agro-Geoinformatics) (pp. 1-4). IEEE. https://doi.org/10.1109/Agro-Geoinformatics.2019.8820541
[12]. Kulkarni, O. (2018, August). Crop disease detection
using deep learning. In 2018, Fourth International
Conference on Computing Communication Control and
Automation (ICCUBEA) (pp. 1-4). IEEE. https://doi.org/
10.1109/ICCUBEA.2018.8697390
[13]. Lauguico, S., Concepcion, R., Tobias, R. R., Bandala,
A., Vicerra, R. R., & Dadios, E. (2020, November). Grape
Leaf Multi-disease Detection with Confidence Value Using
Transfer Learning Integrated to Regions with Convolutional
Neural Networks. In 2020, IEEE REGION 10 CONFERENCE
(TENCON) (pp. 767-772). IEEE. https://doi.org/10.1109/TEN
CON50793.2020.9293866
[14]. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep
learning. Nature, 521, 436-444. https://doi.org/10.1038/
nature14539
[15]. Li, K., Lin, J., Liu, J., Zhao, Y., Dou, S., Zhang, Y., & Liu, X.
(2019, November). Classification of different degrees of
ginkgo leaf disease based on deep learning. In 2019, 6th
International Conference on Systems and Informatics
(ICSAI) (pp. 1228-1232). IEEE. https://doi.org/10.1109/ICSAI
48974.2019.9010110
[16]. Lumini, A., & Nanni, L. (2019). Deep learning and
transfer learning features for plankton classification.
Ecological Informatics, 51, 33-43. https://doi.org/10.1016/
j.ecoinf.2019.02.007
[17]. Marr, B. (2019). What is Machine Vision And How Is It
Used In Business Today?. Retrieved from https://www.forbes.
com/sites/bernardmarr/2019/10/11/what-is-machinevision-
and-how-is-it-used-in-business-today/?sh=2414057
69396
[18]. Noon, S. K., Amjad, M., Qureshi, M. A., & Mannan, A. (2020). Use of deep learning techniques for identification
of plant leaf stresses: A review. Sustainable Computing:
Informatics and Systems, 100443. https://doi.org/10.1016/
j.suscom.2020.100443
[19]. Razdan, V., & Bateman, R. (2015, June). Investigation
into the use of smartphone as a machine vision device for
engineering metrology and flaw detection, with focus on
drilling. In Automated Visual Inspection and Machine Vision
(Vol. 9530, p. 95300C). International Society for Optics and
Photonics. https://doi.org/10.1117/12.2183081
[20]. Sagar, A., & Dheeba, J. (2020). On using transfer
learning for plant disease detection. bioRxiv. https://doi.
org/10.1101/2020.05.22.110957
[21]. Schmidhuber, J. (2015). Deep learning in neural
networks: An overview. Neural Networks, 61, 85-117.
https://doi.org/10.1016/j.neunet.2014.09.003
[22]. Sharma, P., Berwal, Y. P. S., & Ghai, W. (2018,
November). KrishiMitr (Farmer's Friend): Using Machine
Learning to Identify Diseases in Plants. In 2018, IEEE
International Conference on Internet of Things and
Intelligence System (IOTAIS) (pp. 29-34). IEEE. https://doi.
org/10.1109/IOTAIS.2018.8600898
[23]. Stafford, J. V. (2000). Implementing precision
agriculture in the 21st century. Journal of agricultural
engineering research, 76(3), 267-275. https://doi.org/10.1
006/jaer.2000.0577
[24]. Valdoria, J. C., Caballeo, A. R., Fernandez, B. I. D., &
Condino, J. M. M. (2019, October). iDahon: An android
based terrestrial plant disease detection mobile
application through digital image processing using deep
learning neural network algorithm. In 2019, 4th International
Conference on Information Technology (InCIT) (pp. 94-98).
IEEE. https://doi.org/10.1109/INCIT.2019.8912053