References
[1]. Bejan, A. (1979). A study of entropy generation in
fundamental convective heat transfer. Journal of Heat
Transfer, 101(4), 718-725. https://doi.org/10.1115/1.3451063
[2]. Bejan, A. (1980). Second law analysis in heat transfer.
Energy, 5(8-9), 720-732. https://doi.org/10.1016/0360-5442(80)90091-2
[3]. Bejan, A. (1982). Entropy Generation through Heat
and Fluid Flow. Wiley, New York.
[4]. Bejan, A. (1988). Advanced Engineering
Thermodynamics. Wiley & Sons, New York.
[5]. Bejan, A. (1995). Entropy Generation Minimization.
CRC Press, Boca Raton, (pp. 400). https://doi.org/10.1201/9781482239171
[6]. El-Sagier, F. E. M. (1998). Experimental and Numerical
Study of Solid-Liquid Phase Change Transition in a Spiral
Energy Storage Unit (Doctoral dissertation), The Institute of
Heat Engineering, Warsaw University of Technology,
Poland.
[7]. Jarungthammachote, S. (2010). Entropy generation
analysis for fully developed laminar convection in
hexagonal duct subjected to constant heat flux. Energy,
35(12), 5374-5379. https://doi.org/10.1016/j.energy.2010.07.020
[8]. Kakaç, S., Shah, R. K., & Aung, W. (1987). Handbook of
Single-Phase Convective Heat Transfer. John Wiley &Sons.
[9]. Ko, T. H. (2006). Thermodynamic analysis of optimal
mass flow rate for fully developed laminar forced
convection in a helical coiled tube based on minimal
entropy generation principle. Energy Conversion and
Management, 47(18-19), 3094-3104. https://doi.org/10.1016/j.enconman.2006.03.006
[10]. Mahmud, S., & Fraser, R. A. (2002). Second law
analysis of heat transfer and fluid flow inside a cylindrical
annular space. Exergy, an International Journal, 2(4), 322-329. https://doi.org/10.1016/S1164-0235(02)00078-X
[11]. Morimoto, E., & Hotta, K. (1988). Study of the
geometric structure and heat transfer characteristics of a
spiral plate heat exchanger. Heat transfer. Japanese
research, 17(1), 53-71.
[12]. Öztop, H. F., Şahin, A. Z., & Dağtekin, İ. (2004).
Entropy generation through hexagonal cross sectional
duct for constant wall temperature in laminar flow.
International Journal of Energy Research, 28(8), 725-737.
https://doi.org/10.1002/er.994
[13]. Rohsenow, W M, Hartnett, J P, & Ganic, E N. (1985).
Handbook of Heat Transfer Fundamentals (2nd edn.). NY: McGraw-Hill.
[14]. Şahin, A. Z. (1998a). A second law comparison for
optimum shape of duct subjected to constant wall
temperature and laminar flow. Heat and Mass Transfer,
33(5), 425-430. https://doi.org/10.1007/s002310050210
[15]. Şahin, A. Z. (1998b). Irreversibilities in various duct
geometries with constant wall heat flux and laminar flow.
Energy, 23(6), 465-473. https://doi.org/10.1016/S0360-5442(98)00010-3
[16]. Şahin, A. Z. (1998c). Second law analysis of laminar
viscous flow through a duct subjected to constant wall
temperature. Journal of Heat Transfer, 120(1), 76-83.
https://doi.org/10.1115/1.2830068
[17]. Şahin, A. Z. (2000). Entropy generation in turbulent
liquid flow through a smooth duct subjected to constant
wall temperature. International Journal of Heat and Mass
Transfer, 43(8), 1469-1478. https://doi.org/10.1016/S0017-9310(99)00216-1
[18]. Şahin, A. Z. (2002). Entropy generation and pumping
power in a turbulent fluid flow through a smooth pipe
subjected to constant heat flux. Exergy, an International
Journal, 2(4), 314-321. https://doi.org/10.1016/S1164-0235(02)00082-1
[19]. Şahin, A. Z., & Ben-Mansour, R. (2003). Entropy
generation in laminar fluid flow through a circular pipe.
Entropy, 5(5), 404-416. https://doi.org/10.3390/e5050404
[20]. Sekulic, D. P., Campo, A., & Morales, J. C. (1997).
Irreversibility phenomena associated with heat transfer and fluid friction in laminar flows through singly connected
ducts. International Journal of Heat and Mass Transfer,
40(4), 905-914. https://doi.org/10.1016/0017-9310(96)00123-8
[21]. Shah, R. K., & Sekulic, D. P. (2003). Fundamentals of
Heat Exchanger Design. John Wiley & Sons.
[22]. Taherian, H., & Mirgolbaba, H. (2009). Irreversibilities
in duct geometries of rhombic and circular with constant
wall heat flux and laminar flow. Journal of Applied
Sciences, 9(2), 327-333. https://doi.org/10.3923/jas.2009.327.333
[23]. Talebi, M. (2010). Entropy generation analysis of a
variable property fluid convection in a helical tube. World
Applied Science Journal, 10(4), 406-415.
[24]. Yilmaz, M., Sara, O. N., & Karsli, S. (2001).
Performance evaluation criteria for heat exchangers
based on second law analysis. Exergy, an International
Journal, 1(4), 278-294. https://doi.org/10.1016/S1164-0235(01)00034-6