References
[1]. Abboud, Y., Abourriche, A., Saffaj, T., Berrada, M.,
Charrouf, M., Bennamara, A., Cherqaoui, A., & Takky, D.
(2006). The inhibition of mild steel corrosion in acidic
medium by 2,2′-bis(benzimidazole). Applied Surface
Science, 252(23), 8178–8184. https://doi.org/10.1016/j.
apsusc.2005.10.060
[2]. Abboud, Y., Hammouti, B., Abourriche, A., Ihssane, B.,
Bennamara, A., Charrouf, M., & Al-Deyab, S. S. (2012). 2-
(o-Hydroxyphenyl)benzimidazole as a new corrosion
inhibitor for mild steel in hydrochloric acid solution.
International Journal of Electrochemical Science, 7(3),
2543–2551.
[3]. Ahamad, I., & Quraishi, M. A. (2009). Bis (benzimidazol-
2-yl) disulphide: An efficient water soluble inhibitor for
corrosion of mild steel in acid media. Corrosion Science,
51(9), 2006–2013. https://doi.org/10.1016/j.corsci.2009.
05.026
[4]. Alhaffar, M. T., Umoren, S. A., Obot, I. B., & Ali, S. A.
(2018). Isoxazolidine derivatives as corrosion inhibitors for
low carbon steel in HCl solution: Experimental, theoretical
and effect of KI studies. RSC Advances, 8(4), 1764–1777.
https://doi.org/10.1039/C7RA11549K
[5]. Aljourani, J., Golozar, M. A., & Raeissi, K. (2010). The
inhibition of carbon steel corrosion in hydrochloric and
sulfuric acid media using some benzimidazole derivatives.
Materials Chemistry and Physics, 121(1–2), 320–325.
https://doi.org/10.1016/j.matchemphys.2010.01.040
[6]. Aljourani, J., Raeissi, K., & Golozar, M. A. (2009).
Benzimidazole and its derivatives as corrosion inhibitors for
mild steel in 1M HCl solution. Corrosion Science, 51(8),
1836–1843. https://doi.org/10.1016/j.corsci.2009.05.011
[7]. Ansari, K. F., & Lal, C. (2009). Synthesis,
physicochemical properties and antimicrobial activity of
some new benzimidazole derivatives. European Journal of
Medicinal Chemistry, 44(10), 4028–4033. https://doi.org/
10.1016/j.ejmech.2009.04.037
[8]. Benabdellah, M., Tounsi, A., Khaled, K. F., & Hammouti,
B. (2011). Thermodynamic, chemical and electrochemical
investigations of 2-mercapto benzimidazole as corrosion
inhibitor for mild steel in hydrochloric acid solutions. Arabian
Journal of Chemistry, 4(1), 17–24. https://doi.org/10.1016/j.
arabjc.2010.06.010
[9]. Boughoues, Y., Benamira, M., Messaadia, L., Bouider,
N., & Abdelaziz, S. (2020). Experimental and theoretical
investigations of four amine derivatives as effective
corrosion inhibitors for mild steel in HCl medium. RSC
Advances, 10(40), 24145–24158. https://doi.org/10.1039/
D0RA03560B
[10]. Cen, H., Chen, Z., & Guo, X. (2019). N, S co-doped
carbon dots as effective corrosion inhibitor for carbon steel
in CO2-saturated 3.5% NaCl solution. Journal of the Taiwan
Institute of Chemical Engineers, 99, 224–238. https://
doi.org/10.1016/j.jtice.2019.02.036
[11]. Chaouiki, A., Chafiq, M., Rbaa, M., Salghi, R.,
Lakhrissi, B., Ali, I. H., Bashir, S., & Chung, I. M. (2020).
Comprehensive assessment of corrosion inhibition
mechanisms of novel benzimidazole compounds for mild
steel in HCl: An experimental and theoretical investigation.
Journal of Molecular Liquids, 320, 114383. https://doi.
org/10.1016/j.molliq.2020.114383
[12]. Chkirate, K., Azgaou, K., Elmsellem, H., El Ibrahimi, B.,
Sebbar, N. K., Anouar, E. H., Benmessaoud, M., El Hajjaji, S.,
& Essassi, E. M. (2021). Corrosion inhibition potential of 2-[(5-
methylpyrazol-3-yl) methyl]benzimidazole against carbon
steel corrosion in 1 M HCl solution: Combining experimental
and theoretical studies. Journal of Molecular Liquids, 321,
114750. https://doi.org/10.1016/j.molliq.2020.114750
[13]. Daoud, D., Douadi, T., Hamani, H., Chafaa, S., & Al-
Noaimi, M. (2015). Corrosion inhibition of mild steel by two
new S-heterocyclic compounds in 1 M HCl: Experimental
and computational study. Corrosion Science, 94, 21–37.
https://doi.org/10.1016/j.corsci.2015.01.025
[14]. Dutta, A., Saha, S. K., Adhikari, U., Banerjee, P., &
Sukul, D. (2017). Effect of substitution on corrosion inhibition
properties of 2-(substituted phenyl) benzimidazole
derivatives on mild steel in 1 M HCl solution: A combined
experimental and theoretical approach. Corrosion Science, 123, 256–266. https://doi.org/10.1016/j.corsci.
2017.04.017
[15]. Dutta, A., Saha, S. K., Banerjee, P., & Sukul, D. (2015).
Correlating electronic structure with corrosion inhibition
potentiality of some bis-benzimidazole derivatives for mild
steel in hydrochloric acid: Combined experimental and
theoretical studies. Corrosion Science, 98, 541–550.
https://doi.org/10.1016/j.corsci.2015.05.065
[16]. Ech-chihbi, E., Nahlé, A., Salim, R., Benhiba, F.,
Moussaif, A., El-Hajjaji, F., Oudda, H., Guenbour, A., Taleb,
M., Warad, I., & Zarrouk, A. (2020). Computational, MD
simulation, SEM/EDX and experimental studies for
understanding adsorption of benzimidazole derivatives as
corrosion inhibitors in 1.0 M HCl solution. Journal of Alloys
and Compounds, 844, 155842. https://doi.org/10.1016/j.
jallcom.2020.155842
[17]. Edoziuno, F. O., Adediran, A. A., Odoni, B. U., Oki, M.,
Ikubanni, P. P., & Omodara, O. (2020). Performance of
M e t h y l - 5 - B e n z o y l - 2 - B e n z imi d a z o l e C a r b ama t e
(Mebendazole) as Corrosion Inhibitor for Mild Steel in Dilute
Sulphuric Acid. Scientific World Journal, 2020. https://
doi.org/10.1155/2020/2756734
[18]. El-Hajjaji, F., Merimi, I., El Ouasif, L., El Ghoul, M.,
Achour, R., Hammouti, B., Belghiti, M. E., Chauhan, D. S., &
Quraishi, M. A. (2019). 1-octyl-2-(Octylthio)-1Hbenzimidazole
as a new and effective corrosion inhibitor
for carbon steel in 1 M HCl. Portugaliae Electrochimica
Acta, 37(3), 131–145. https://doi.org/10.4152/pea.20190
3131
[19]. El Aoufir, Y., El Bakri, Y., Lgaz, H., Zarrouk, A., Salghi, R.,
Warad, I., Ramli, Y., Guenbour, A., Essassi, E. M., & Oudda,
H. (2017). Understanding the adsorption of benzimidazole
derivative as corrosion inhibitor for carbon steel in 1 M HCl:
Experimental and theoretical studies. Journal of Materials
and Environmental Science, 8(9), 3290–3302.
[20]. Fergachi, O., Benhiba, F., Rbaa, M., Ouakki, M.,
Galai, M., Touir, R., Lakhrissi, B., Oudda, H., & Touhami, M.
E. (2019). Corrosion Inhibition of Ordinary Steel in 5.0 M HCl
Medium by Benzimidazole Derivatives: Electrochemical,
UV–Visible Spectrometry, and DFT Calculations. Journal of
Bio- and Tribo- Corrosion, 5(1), 1–13. https://doi.org/10.1007/s40735-018-0215-3
[21]. Garcia-Ochoa, E., Guzmán-Jiménez, S. J.,
Hernández, J. G., Pandiyan, T., Vásquez-Pérez, J. M., &
Cruz-Borbolla, J. (2016). Benzimidazole ligands in the
corrosion inhibition for carbon steel in acid medium: DFT
study of its interaction on Fe30 surface. Journal of
Molecular Structure, 1119, 314–324. https://doi.org/10.
1016/j.molstruc.2016.04.057
[22]. Gowda, N. R. T., Kavitha, C. V., Chiruvella, K. K., Joy,
O., Rangappa, K. S., & Raghavan, S. C. (2009). Synthesis
and biological evaluation of novel 1-(4-methoxyphenethyl)-
1H-benzimidazole-5- carboxylic acid derivatives and their
precursors as antileukemic agents. Bioorganic and
Medicinal Chemistry Letters, 19(16), 4594–4600. https://
doi.org/10.1016/j.bmcl.2009.06.103
[23]. Guadalupe, H. J., García-Ochoa, E., Maldonado-
Rivas, P. J., Cruz, J., & Pandiyan, T. (2011). A combined
electrochemical and theoretical study of N,N′-
bis(benzimidazole-2yl-ethyl)-1,2-diaminoethane as a new
corrosion inhibitor for carbon steel surface. Journal of
Electroanalytical Chemistry, 655(2), 164–172. https://doi.
org/10.1016/j.jelechem.2011.01.039
[24]. Hegazy, M. A., El-Tabei, A. S., Bedair, A. H., & Sadeq,
M. A. (2012). An investigation of three novel nonionic
surfactants as corrosion inhibitor for carbon steel in 0.5M
H2SO4 . Corrosion Science, 54(1), 219–230. https://doi.
org/10.1016/j.corsci.2011.09.019
[25]. Jing, C., Wang, Z., Gong, Y., Huang, H., Ma, Y., Xie, H.,
Li, H., Zhang, S., & Gao, F. (2018). Photo and thermally
stable branched corrosion inhibitors containing two
benzotriazole groups for copper in 3.5 wt% sodium
chloride solution. Corrosion Science, 138(2010), 353–371.
https://doi.org/10.1016/j.corsci.2018.04.027
[26]. Khaled, K. F. (2003). The inhibition of benzimidazole
derivatives on corrosion of iron in 1 M HCl solutions.
Electrochimica Acta, 48(17), 2493–2503. https://doi.org/
10.1016/S0013-4686(03)00291-3
[27]. Kumar, H., & Dhanda, T. (2021). Cyclohexylamine an
effective corrosion inhibitor for mild steel in 0.1 N H2SO4 :
Experimental and theoretical (molecular dynamics
simulation and FMO) study. Journal of Molecular Liquids, 327, 114847. https://doi.org/10.1016/j.molliq.2020.114847
[28]. Lgaz, H., Masroor, S., Chafiq, M., Damej, M., Brahmia,
A., Salghi, R., Benmessaoud, M., Ali, I. H., Alghamdi, M. M.,
Chaouiki, A., & Chung, I. M. (2020). Evaluation of 2-
mercaptobenzimidazole derivatives as corrosion inhibitors
for mild steel in hydrochloric acid. Metals, 10(3), 1–14.
https://doi.org/10.3390/met10030357
[29]. Madkour, L. H., & Elshamy, I. H. (2016). Experimental
and computational studies on the inhibition performances
of benzimidazole and its derivatives for the corrosion of
copper in nitric acid. International Journal of Industrial
Chemistry, 7(2), 195–221. https://doi.org/10.1007/s40090-
015-0070-8
[30]. Mahgoub, F. M., Al-Nowaiser, F. M., & Al-Sudairi, A. M.
(2011). Effect of temperature on the inhibition of the acid
corrosion of steel by benzimidazole derivatives. Protection
of Metals and Physical Chemistry of Surfaces, 47(3),
381–394. https://doi.org/10.1134/S2070205111030087
[31]. Masroor, S. (2017). Azomethine as Potential Corrosion
Inhibitor for Different Metals and Alloys: Review. Journal of
Bio- and Tribo-Corrosion, 3(3), 1–16. https://doi.org/10.
1007/s40735-017-0086-z
[32]. Niamien, P. M., Essy, F. K., Trokourey, A., Yapi, A., Aka, H.
K., & Diabate, D. (2012). Correlation between the
molecular structure and the inhibiting effect of some
benzimidazole derivatives. Materials Chemistry and
Physics, 136(1), 59–65. https://doi.org/10.1016/j.matchem
phys.2012.06.025
[33]. Obot, I. B., Madhankumar, A., Umoren, S. A., &
Gasem, Z. M. (2015). Surface protection of mild steel using
benzimidazole derivatives: Experimental and theoretical
approach. Journal of Adhesion Science and Technology,
29(19), 2130–2152. https://doi.org/10.1080/01694243.
2015.1058544
[34]. Obot, I. B., & Obi-Egbedi, N. O. (2010). Theoretical
study of benzimidazole and its derivatives and their
potential activity as corrosion inhibitors. Corrosion Science,
52(2), 657–660. https://doi.org/10.1016/j.corsci.2009.10.
017
[35]. Olasunkanmi, L. O., Kabanda, M. M., & Ebenso, E. E.
(2016). Quinoxaline derivatives as corrosion inhibitors for mild steel in hydrochloric acid medium: Electrochemical
and quantum chemical studies. Physica E: Low-
Dimensional Systems and Nanostructures, 76, 109–126.
https://doi.org/10.1016/j.physe.2015.10.005
[36]. Onyeachu, I. B., Obot, I. B., Sorour, A. A., & Abdul-
Rashid, M. I. (2019). Green corrosion inhibitor for oilfield
application I: Electrochemical assessment of 2-(2-pyridyl)
benzimidazole for API X60 steel under sweet environment in
NACE brine ID196. Corrosion Science, 150(February),
183–193. https://doi.org/10.1016/j.corsci.2019.02.010
[37]. Onyeachu, I. B., Solomon, M. M., Umoren, S. A., Obot,
I. B., & Sorour, A. A. (2020). Corrosion inhibition effect of a
benzimidazole derivative on heat exchanger tubing
materials during acid cleaning of multistage flash
desalination plants. Desalination, 479 (December),
114283. https://doi.org/10.1016/j.desal.2019.114283
[38]. Rbaa, M., Galai, M., El Faydy, M., El Kacimi, Y.,
Touhami, M. E., Zarrouk, A., & Lakhrissi, B. (2017). Synthesis
and characterization of new benzimidazoles derivatives of
8-hydroxyquinoline as a corrosion inhibitor for mild steel in
1.0 M hydrochloric acid medium. Anal. Bioanal.
Electrochem, 9(7), 904-928.
[39]. Roque, J. M., Pandiyan, T., Cruz, J., & García-Ochoa,
E. (2008). DFT and electrochemical studies of tris
(benzimidazole-2-ylmethyl)amine as an efficient corrosion
inhibitor for carbon steel surface. Corrosion Science, 50(3),
614–624. https://doi.org/10.1016/j.corsci.2007.11.012
[40]. Rouifi, Z., Rbaa, M., Abousalem, A. S., Benhiba, F.,
Laabaissi, T., Oudda, H., Lakhrissi, B., Guenbour, A., Warad,
I., & Zarrouk, A. (2020). Synthesis, characterization and
corrosion inhibition potential of newly benzimidazole
derivatives: Combining theoretical and experimental
study. Surfaces and Interfaces, 18 (September 2019).
https://doi.org/10.1016/j.surfin.2020.100442
[41]. Rugmini Ammal, P., Prasad, A. R., & Joseph, A. (2018).
Comparative studies on the electrochemical and
physicochemical behaviour of three different
benzimidazole motifs as corrosion inhibitor for mild steel in
hydrochloric acid. Egyptian Journal of Petroleum, 27(4),
1067–1076. https://doi.org/10.1016/j.ejpe.2018.03.006
[42]. Sehmi, A., Ouici, H. B., Guendouzi, A., Ferhat, M., Benali, O., & Boudjellal, F. (2020). Corrosion Inhibition of
Mild Steel by newly Synthesized Pyrazole Carboxamide
Derivatives in HCl Acid Medium: Experimental and
Theoretical Studies. Journal of the Electrochemical Society,
167(15), 1-18.
[43]. Sherif, E. S. M. (2006). Effects of 2-amino-5-(ethylthio)-
1,3,4-thiadiazole on copper corrosion as a corrosion
inhibitor in 3% NaCl solutions. Applied Surface Science,
252(24), 8615–8623. https://doi.org/10.1016/j.apsusc.
2005.11.082
[44]. Sliem, M. H., Afifi, M., Bahgat Radwan, A., Fayyad, E.
M., Shibl, M. F., Heakal, F. E. T., & Abdullah, A. M. (2019).
AEO7 Surfactant as an Eco-Friendly Corrosion Inhibitor for
Carbon Steel in HCl solution. Scientific Reports, 9(1), 1–16.
https://doi.org/10.1038/s41598-018-37254-7
[45]. Solomon, M. M., Onyeachu, I. B., Njoku, D. I.,
Nwanonenyi, S. C., & Oguzie, E. E. (2021). Adsorption and
corrosion inhibition characteristics of 2–(chloromethyl)
benzimidazole for C1018 carbon steel in a typical sweet
corrosion environment: Effect of chloride ion concentration
and temperature. Colloids and Surfaces A: Physicochemical
and Engineering Aspects, 610(September), 125638.
https://doi.org/10.1016/j.colsurfa.2020.125638
[46]. Srivastava, V., Salman, M., Chauhan, D. S., Abdel-
Azeim, S., & Quraishi, M. A. (2021). (E)-2-styryl- 1Hbenzo[
d]imidazole as novel green corrosion inhibitor for
carbon steel: Experimental and computational approach.
Journal of Molecular Liquids, 324, 115010. https://doi.
org/10.1016/j.molliq.2020.115010
[47]. Tan, B., Zhang, S., Li, W., Zuo, X., Qiang, Y., Xu, L., Hao,
J., & Chen, S. (2019). Experimental and theoretical studies
on inhibition performance of Cu corrosion in 0.5 M H2SO4 by
three disulfide derivatives. Journal of Industrial and
Engineering Chemistry, 77, 449–460. https://doi.org/10.
1016/j.jiec.2019.05.011
[48]. Tang, Y., Zhang, F., Hu, S., Cao, Z., Wu, Z., & Jing, W.
(2013). Novel benzimidazole derivatives as corrosion
inhibitors of mild steel in the acidic media. Part I:
Gravimetric, electrochemical, SEM and XPS studies.
Corrosion Science, 74, 271–282. https://doi.org/10.1016/j.
corsci.2013.04.053
[49]. Tian, H., Cheng, Y. F., Li, W., & Hou, B. (2015). Triazolylacylhydrazone
derivatives as novel inhibitors for copper
corrosion in chloride solutions. Corrosion Science, 100,
341–352. https://doi.org/10.1016/j.corsci.2015.08.022
[50]. Toukal, L., Keraghel, S., Benghanem, F., & Ourari, A.
(2018). Electrochemical, thermodynamic and quantum
chemical studies of synthesized benzimidazole derivative
as an eco-friendly corrosion inhibitor for XC52 steel in
h y d r o c h l o r i c a c i d . I n t e r n a t i o n a l J o u r n a l o f
Electrochemical Science, 13(1), 951–974. https://doi.org/
10.20964/2018.01.43
[51]. Walia, R., Naaz, S. F., Iqbal, K., & Lamba, H. S. (2011).
Benzimidazole Derivatives – an Overview. International
Journal of Research in Pharmacy and Chemistry, 1(3),
565–574.
[52]. Wang, Q., Tan, B., Bao, H., Xie, Y., Mou, Y., Li, P., Chen,
D., Shi, Y., Li, X., & Yang, W. (2019). Evaluation of Ficus tikoua
leaves extract as an eco-friendly corrosion inhibitor for
carbon steel in HCl media. Bioelectrochemistry, 128,
49–55. https://doi.org/10.1016/j.bioelechem.2019.03.001
[53]. Wang, X. (2012). The inhibition effect of bis-
Benzimidazole compound for mild steel in 0.5 M HCL
solution. International Journal of Electrochemical Science,
7(11), 11149–11160.
[54]. Wang, X., Yang, H., & Wang, F. (2011). An investigation
of benzimidazole derivative as corrosion inhibitor for mild
steel in different concentration HCl solutions. Corrosion
Science, 53(1), 113–121. https://doi.org/10.1016/j.corsci.
2010.09.029
[55]. Xu, B., Gong, W., Zhang, K., Yang, W., Liu, Y., Yin, X.,
Shi, H., & Chen, Y. (2015). Theoretical prediction and
experimental study of 1-Butyl-2-(4-methylphenyl)
benzimidazole as a novel corrosion inhibitor for mild steel in
hydrochloric acid. Journal of the Taiwan Institute of
Chemical Engineers, 51, 193–200. https://doi.org/10.
1016/j.jtice.2015.01.014
[56]. Yadav, M., Kumar, S., Purkait, T., Olasunkanmi, L. O.,
Bahadur, I., & Ebenso, E. E. (2016). Electrochemical,
thermodynamic and quantum chemical studies of
synthesized benzimidazole derivatives as corrosion
inhibitors for N80 steel in hydrochloric acid. Journal of Molecular Liquids, 213, 122–138. https://doi.org/10.1016/j.
molliq.2015.11.018
[57]. Yadav, Mahendra, Behera, D., Kumar, S., & Sinha, R.
R. (2013). Experimental and quantum chemical studies on
the corrosion inhibition performance of benzimidazole
derivatives for mild steel in Hcl. Industrial and Engineering
Chemistry Research, 52(19), 6318–6328. https://doi.org/
10.1021/ie400099q
[58]. Zhang, D. Q., Gao, L. X., & Zhou, G. D. (2003).
Synergistic effect of 2-mercapto benzimidazole and KI on
copper corrosion inhibition in aerated sulfuric acid solution.
Journal of Applied Electrochemistry, 33(5), 361–366.
https://doi.org/10.1023/A:1024403314993
[59]. Zhang, D., Tang, Y., Qi, S., Dong, D., Cang, H., & Lu, G.
(2016). The inhibition performance of long- chain alkylsubstituted
benzimidazole derivatives for corrosion of mild
steel in HCl. Corrosion Science, 102, 517–522. https://doi.
org/10.1016/j.corsci.2015.10.002
[60]. Zhang, F., Tang, Y., Cao, Z., Jing, W., Wu, Z., & Chen, Y.
(2012). Performance and theoretical study on corrosion
inhibition of 2-(4-pyridyl)-benzimidazole for mild steel in
hydrochloric acid. Corrosion Science, 61, 1–9. https://doi. org/10.1016/j.corsci.2012.03.045
[61]. Zhang, G. A., Hou, X. M., Hou, B. S., & Liu, H. F. (2019).
Benzimidazole derivatives as novel inhibitors for the
corrosion of mild steel in acidic solution: Experimental and
theoretical studies. Journal of Molecular Liquids, 278,
413–427. https://doi.org/10.1016/j.molliq.2019.01.060
[62]. Zhang, J., & Li, H. (2020a). 2-(2-chlorophenyl)-1Hbenzimidazole
as a new corrosion inhibitor for copper in
sulfuric acid. International Journal of Electrochemical
Science, 15, 5362–5372. https://doi.org/10.20964/2020.
06.63
[63]. Zhang, J., & Li, H. (2020b). Inhibition effect and
mechanism of 2-(3-bromophenyl)-1-phenyl-1Hbenzimidazole
on copper corrosion in acidic solution.
International Journal of Electrochemical Science, 15,
4368–4378. https://doi.org/10.20964/2020.05.65
[64]. Zhou, Y., Guo, L., Zhang, S., Kaya, S., Luo, X., & Xiang,
B. (2017). Corrosion control of mild steel in 0.1 M H2SO4
solution by benzimidazole and its derivatives: An
experimental and theoretical study. RSC Advances, 7(39),
23961–23969. https://doi.org/10.1039/C7RA02192E