Review: Benzimidazole Derivatives as Corrosion Inhibitors for Metals and their Alloys

Jeeni Patel*, Dhara D. Patel**
*-** Department of Chemistry, Sankalchand Patel University, Visnagar, Gujarat, India.
Periodicity:July - September'2021
DOI : https://doi.org/10.26634/jms.9.2.18374

Abstract

Many organic inhibitors have been reported for the corrosion inhibition of various metals and their alloys. The synthetic heterocyclic compounds composed of strong electronegative atoms and heteroatoms such as (O) Oxygen, (N) Nitrogen and (S) Sulphur were observed to be very effective at preventing metal like iron and copper corrosion. A concept of studying benzimidazole derivatives compounds for corrosion inhibition of metals and their alloys has been formed in recent years as they contain heteroatoms, two aromatic ring structures, and pi bonds in the structural geometry. Based on this study, we have observed the potential of benzimidazole derivatives as corrosion inhibitors for various metals and alloys through acidic or basic environments. We have studied most of the inhibitors that follow Langmuir adsorption isotherm.

Keywords

Benzimidazole, Corrosion, Inhibitors, Metal Alloys.

How to Cite this Article?

Patel, J., and Patel, D. D. (2021). Review: Benzimidazole Derivatives as Corrosion Inhibitors for Metals and their Alloys. i-manager's Journal on Material Science, 9(2), 36-51. https://doi.org/10.26634/jms.9.2.18374

References

[1]. Abboud, Y., Abourriche, A., Saffaj, T., Berrada, M., Charrouf, M., Bennamara, A., Cherqaoui, A., & Takky, D. (2006). The inhibition of mild steel corrosion in acidic medium by 2,2′-bis(benzimidazole). Applied Surface Science, 252(23), 8178–8184. https://doi.org/10.1016/j. apsusc.2005.10.060
[2]. Abboud, Y., Hammouti, B., Abourriche, A., Ihssane, B., Bennamara, A., Charrouf, M., & Al-Deyab, S. S. (2012). 2- (o-Hydroxyphenyl)benzimidazole as a new corrosion inhibitor for mild steel in hydrochloric acid solution. International Journal of Electrochemical Science, 7(3), 2543–2551.
[3]. Ahamad, I., & Quraishi, M. A. (2009). Bis (benzimidazol- 2-yl) disulphide: An efficient water soluble inhibitor for corrosion of mild steel in acid media. Corrosion Science, 51(9), 2006–2013. https://doi.org/10.1016/j.corsci.2009. 05.026
[4]. Alhaffar, M. T., Umoren, S. A., Obot, I. B., & Ali, S. A. (2018). Isoxazolidine derivatives as corrosion inhibitors for low carbon steel in HCl solution: Experimental, theoretical and effect of KI studies. RSC Advances, 8(4), 1764–1777. https://doi.org/10.1039/C7RA11549K
[5]. Aljourani, J., Golozar, M. A., & Raeissi, K. (2010). The inhibition of carbon steel corrosion in hydrochloric and sulfuric acid media using some benzimidazole derivatives. Materials Chemistry and Physics, 121(1–2), 320–325. https://doi.org/10.1016/j.matchemphys.2010.01.040
[6]. Aljourani, J., Raeissi, K., & Golozar, M. A. (2009). Benzimidazole and its derivatives as corrosion inhibitors for mild steel in 1M HCl solution. Corrosion Science, 51(8), 1836–1843. https://doi.org/10.1016/j.corsci.2009.05.011
[7]. Ansari, K. F., & Lal, C. (2009). Synthesis, physicochemical properties and antimicrobial activity of some new benzimidazole derivatives. European Journal of Medicinal Chemistry, 44(10), 4028–4033. https://doi.org/ 10.1016/j.ejmech.2009.04.037
[8]. Benabdellah, M., Tounsi, A., Khaled, K. F., & Hammouti, B. (2011). Thermodynamic, chemical and electrochemical investigations of 2-mercapto benzimidazole as corrosion inhibitor for mild steel in hydrochloric acid solutions. Arabian Journal of Chemistry, 4(1), 17–24. https://doi.org/10.1016/j. arabjc.2010.06.010
[9]. Boughoues, Y., Benamira, M., Messaadia, L., Bouider, N., & Abdelaziz, S. (2020). Experimental and theoretical investigations of four amine derivatives as effective corrosion inhibitors for mild steel in HCl medium. RSC Advances, 10(40), 24145–24158. https://doi.org/10.1039/ D0RA03560B
[10]. Cen, H., Chen, Z., & Guo, X. (2019). N, S co-doped carbon dots as effective corrosion inhibitor for carbon steel in CO2-saturated 3.5% NaCl solution. Journal of the Taiwan Institute of Chemical Engineers, 99, 224–238. https:// doi.org/10.1016/j.jtice.2019.02.036
[11]. Chaouiki, A., Chafiq, M., Rbaa, M., Salghi, R., Lakhrissi, B., Ali, I. H., Bashir, S., & Chung, I. M. (2020). Comprehensive assessment of corrosion inhibition mechanisms of novel benzimidazole compounds for mild steel in HCl: An experimental and theoretical investigation. Journal of Molecular Liquids, 320, 114383. https://doi. org/10.1016/j.molliq.2020.114383
[12]. Chkirate, K., Azgaou, K., Elmsellem, H., El Ibrahimi, B., Sebbar, N. K., Anouar, E. H., Benmessaoud, M., El Hajjaji, S., & Essassi, E. M. (2021). Corrosion inhibition potential of 2-[(5- methylpyrazol-3-yl) methyl]benzimidazole against carbon steel corrosion in 1 M HCl solution: Combining experimental and theoretical studies. Journal of Molecular Liquids, 321, 114750. https://doi.org/10.1016/j.molliq.2020.114750
[13]. Daoud, D., Douadi, T., Hamani, H., Chafaa, S., & Al- Noaimi, M. (2015). Corrosion inhibition of mild steel by two new S-heterocyclic compounds in 1 M HCl: Experimental and computational study. Corrosion Science, 94, 21–37. https://doi.org/10.1016/j.corsci.2015.01.025
[14]. Dutta, A., Saha, S. K., Adhikari, U., Banerjee, P., & Sukul, D. (2017). Effect of substitution on corrosion inhibition properties of 2-(substituted phenyl) benzimidazole derivatives on mild steel in 1 M HCl solution: A combined experimental and theoretical approach. Corrosion Science, 123, 256–266. https://doi.org/10.1016/j.corsci. 2017.04.017
[15]. Dutta, A., Saha, S. K., Banerjee, P., & Sukul, D. (2015). Correlating electronic structure with corrosion inhibition potentiality of some bis-benzimidazole derivatives for mild steel in hydrochloric acid: Combined experimental and theoretical studies. Corrosion Science, 98, 541–550. https://doi.org/10.1016/j.corsci.2015.05.065
[16]. Ech-chihbi, E., Nahlé, A., Salim, R., Benhiba, F., Moussaif, A., El-Hajjaji, F., Oudda, H., Guenbour, A., Taleb, M., Warad, I., & Zarrouk, A. (2020). Computational, MD simulation, SEM/EDX and experimental studies for understanding adsorption of benzimidazole derivatives as corrosion inhibitors in 1.0 M HCl solution. Journal of Alloys and Compounds, 844, 155842. https://doi.org/10.1016/j. jallcom.2020.155842
[17]. Edoziuno, F. O., Adediran, A. A., Odoni, B. U., Oki, M., Ikubanni, P. P., & Omodara, O. (2020). Performance of M e t h y l - 5 - B e n z o y l - 2 - B e n z imi d a z o l e C a r b ama t e (Mebendazole) as Corrosion Inhibitor for Mild Steel in Dilute Sulphuric Acid. Scientific World Journal, 2020. https:// doi.org/10.1155/2020/2756734
[18]. El-Hajjaji, F., Merimi, I., El Ouasif, L., El Ghoul, M., Achour, R., Hammouti, B., Belghiti, M. E., Chauhan, D. S., & Quraishi, M. A. (2019). 1-octyl-2-(Octylthio)-1Hbenzimidazole as a new and effective corrosion inhibitor for carbon steel in 1 M HCl. Portugaliae Electrochimica Acta, 37(3), 131–145. https://doi.org/10.4152/pea.20190 3131
[19]. El Aoufir, Y., El Bakri, Y., Lgaz, H., Zarrouk, A., Salghi, R., Warad, I., Ramli, Y., Guenbour, A., Essassi, E. M., & Oudda, H. (2017). Understanding the adsorption of benzimidazole derivative as corrosion inhibitor for carbon steel in 1 M HCl: Experimental and theoretical studies. Journal of Materials and Environmental Science, 8(9), 3290–3302.
[20]. Fergachi, O., Benhiba, F., Rbaa, M., Ouakki, M., Galai, M., Touir, R., Lakhrissi, B., Oudda, H., & Touhami, M. E. (2019). Corrosion Inhibition of Ordinary Steel in 5.0 M HCl Medium by Benzimidazole Derivatives: Electrochemical, UV–Visible Spectrometry, and DFT Calculations. Journal of Bio- and Tribo- Corrosion, 5(1), 1–13. https://doi.org/10.1007/s40735-018-0215-3
[21]. Garcia-Ochoa, E., Guzmán-Jiménez, S. J., Hernández, J. G., Pandiyan, T., Vásquez-Pérez, J. M., & Cruz-Borbolla, J. (2016). Benzimidazole ligands in the corrosion inhibition for carbon steel in acid medium: DFT study of its interaction on Fe30 surface. Journal of Molecular Structure, 1119, 314–324. https://doi.org/10. 1016/j.molstruc.2016.04.057
[22]. Gowda, N. R. T., Kavitha, C. V., Chiruvella, K. K., Joy, O., Rangappa, K. S., & Raghavan, S. C. (2009). Synthesis and biological evaluation of novel 1-(4-methoxyphenethyl)- 1H-benzimidazole-5- carboxylic acid derivatives and their precursors as antileukemic agents. Bioorganic and Medicinal Chemistry Letters, 19(16), 4594–4600. https:// doi.org/10.1016/j.bmcl.2009.06.103
[23]. Guadalupe, H. J., García-Ochoa, E., Maldonado- Rivas, P. J., Cruz, J., & Pandiyan, T. (2011). A combined electrochemical and theoretical study of N,N′- bis(benzimidazole-2yl-ethyl)-1,2-diaminoethane as a new corrosion inhibitor for carbon steel surface. Journal of Electroanalytical Chemistry, 655(2), 164–172. https://doi. org/10.1016/j.jelechem.2011.01.039
[24]. Hegazy, M. A., El-Tabei, A. S., Bedair, A. H., & Sadeq, M. A. (2012). An investigation of three novel nonionic surfactants as corrosion inhibitor for carbon steel in 0.5M H2SO4 . Corrosion Science, 54(1), 219–230. https://doi. org/10.1016/j.corsci.2011.09.019
[25]. Jing, C., Wang, Z., Gong, Y., Huang, H., Ma, Y., Xie, H., Li, H., Zhang, S., & Gao, F. (2018). Photo and thermally stable branched corrosion inhibitors containing two benzotriazole groups for copper in 3.5 wt% sodium chloride solution. Corrosion Science, 138(2010), 353–371. https://doi.org/10.1016/j.corsci.2018.04.027
[26]. Khaled, K. F. (2003). The inhibition of benzimidazole derivatives on corrosion of iron in 1 M HCl solutions. Electrochimica Acta, 48(17), 2493–2503. https://doi.org/ 10.1016/S0013-4686(03)00291-3
[27]. Kumar, H., & Dhanda, T. (2021). Cyclohexylamine an effective corrosion inhibitor for mild steel in 0.1 N H2SO4 : Experimental and theoretical (molecular dynamics simulation and FMO) study. Journal of Molecular Liquids, 327, 114847. https://doi.org/10.1016/j.molliq.2020.114847
[28]. Lgaz, H., Masroor, S., Chafiq, M., Damej, M., Brahmia, A., Salghi, R., Benmessaoud, M., Ali, I. H., Alghamdi, M. M., Chaouiki, A., & Chung, I. M. (2020). Evaluation of 2- mercaptobenzimidazole derivatives as corrosion inhibitors for mild steel in hydrochloric acid. Metals, 10(3), 1–14. https://doi.org/10.3390/met10030357
[29]. Madkour, L. H., & Elshamy, I. H. (2016). Experimental and computational studies on the inhibition performances of benzimidazole and its derivatives for the corrosion of copper in nitric acid. International Journal of Industrial Chemistry, 7(2), 195–221. https://doi.org/10.1007/s40090- 015-0070-8
[30]. Mahgoub, F. M., Al-Nowaiser, F. M., & Al-Sudairi, A. M. (2011). Effect of temperature on the inhibition of the acid corrosion of steel by benzimidazole derivatives. Protection of Metals and Physical Chemistry of Surfaces, 47(3), 381–394. https://doi.org/10.1134/S2070205111030087
[31]. Masroor, S. (2017). Azomethine as Potential Corrosion Inhibitor for Different Metals and Alloys: Review. Journal of Bio- and Tribo-Corrosion, 3(3), 1–16. https://doi.org/10. 1007/s40735-017-0086-z
[32]. Niamien, P. M., Essy, F. K., Trokourey, A., Yapi, A., Aka, H. K., & Diabate, D. (2012). Correlation between the molecular structure and the inhibiting effect of some benzimidazole derivatives. Materials Chemistry and Physics, 136(1), 59–65. https://doi.org/10.1016/j.matchem phys.2012.06.025
[33]. Obot, I. B., Madhankumar, A., Umoren, S. A., & Gasem, Z. M. (2015). Surface protection of mild steel using benzimidazole derivatives: Experimental and theoretical approach. Journal of Adhesion Science and Technology, 29(19), 2130–2152. https://doi.org/10.1080/01694243. 2015.1058544
[34]. Obot, I. B., & Obi-Egbedi, N. O. (2010). Theoretical study of benzimidazole and its derivatives and their potential activity as corrosion inhibitors. Corrosion Science, 52(2), 657–660. https://doi.org/10.1016/j.corsci.2009.10. 017
[35]. Olasunkanmi, L. O., Kabanda, M. M., & Ebenso, E. E. (2016). Quinoxaline derivatives as corrosion inhibitors for mild steel in hydrochloric acid medium: Electrochemical and quantum chemical studies. Physica E: Low- Dimensional Systems and Nanostructures, 76, 109–126. https://doi.org/10.1016/j.physe.2015.10.005
[36]. Onyeachu, I. B., Obot, I. B., Sorour, A. A., & Abdul- Rashid, M. I. (2019). Green corrosion inhibitor for oilfield application I: Electrochemical assessment of 2-(2-pyridyl) benzimidazole for API X60 steel under sweet environment in NACE brine ID196. Corrosion Science, 150(February), 183–193. https://doi.org/10.1016/j.corsci.2019.02.010
[37]. Onyeachu, I. B., Solomon, M. M., Umoren, S. A., Obot, I. B., & Sorour, A. A. (2020). Corrosion inhibition effect of a benzimidazole derivative on heat exchanger tubing materials during acid cleaning of multistage flash desalination plants. Desalination, 479 (December), 114283. https://doi.org/10.1016/j.desal.2019.114283
[38]. Rbaa, M., Galai, M., El Faydy, M., El Kacimi, Y., Touhami, M. E., Zarrouk, A., & Lakhrissi, B. (2017). Synthesis and characterization of new benzimidazoles derivatives of 8-hydroxyquinoline as a corrosion inhibitor for mild steel in 1.0 M hydrochloric acid medium. Anal. Bioanal. Electrochem, 9(7), 904-928.
[39]. Roque, J. M., Pandiyan, T., Cruz, J., & García-Ochoa, E. (2008). DFT and electrochemical studies of tris (benzimidazole-2-ylmethyl)amine as an efficient corrosion inhibitor for carbon steel surface. Corrosion Science, 50(3), 614–624. https://doi.org/10.1016/j.corsci.2007.11.012
[40]. Rouifi, Z., Rbaa, M., Abousalem, A. S., Benhiba, F., Laabaissi, T., Oudda, H., Lakhrissi, B., Guenbour, A., Warad, I., & Zarrouk, A. (2020). Synthesis, characterization and corrosion inhibition potential of newly benzimidazole derivatives: Combining theoretical and experimental study. Surfaces and Interfaces, 18 (September 2019). https://doi.org/10.1016/j.surfin.2020.100442
[41]. Rugmini Ammal, P., Prasad, A. R., & Joseph, A. (2018). Comparative studies on the electrochemical and physicochemical behaviour of three different benzimidazole motifs as corrosion inhibitor for mild steel in hydrochloric acid. Egyptian Journal of Petroleum, 27(4), 1067–1076. https://doi.org/10.1016/j.ejpe.2018.03.006
[42]. Sehmi, A., Ouici, H. B., Guendouzi, A., Ferhat, M., Benali, O., & Boudjellal, F. (2020). Corrosion Inhibition of Mild Steel by newly Synthesized Pyrazole Carboxamide Derivatives in HCl Acid Medium: Experimental and Theoretical Studies. Journal of the Electrochemical Society, 167(15), 1-18.
[43]. Sherif, E. S. M. (2006). Effects of 2-amino-5-(ethylthio)- 1,3,4-thiadiazole on copper corrosion as a corrosion inhibitor in 3% NaCl solutions. Applied Surface Science, 252(24), 8615–8623. https://doi.org/10.1016/j.apsusc. 2005.11.082
[44]. Sliem, M. H., Afifi, M., Bahgat Radwan, A., Fayyad, E. M., Shibl, M. F., Heakal, F. E. T., & Abdullah, A. M. (2019). AEO7 Surfactant as an Eco-Friendly Corrosion Inhibitor for Carbon Steel in HCl solution. Scientific Reports, 9(1), 1–16. https://doi.org/10.1038/s41598-018-37254-7
[45]. Solomon, M. M., Onyeachu, I. B., Njoku, D. I., Nwanonenyi, S. C., & Oguzie, E. E. (2021). Adsorption and corrosion inhibition characteristics of 2–(chloromethyl) benzimidazole for C1018 carbon steel in a typical sweet corrosion environment: Effect of chloride ion concentration and temperature. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 610(September), 125638. https://doi.org/10.1016/j.colsurfa.2020.125638
[46]. Srivastava, V., Salman, M., Chauhan, D. S., Abdel- Azeim, S., & Quraishi, M. A. (2021). (E)-2-styryl- 1Hbenzo[ d]imidazole as novel green corrosion inhibitor for carbon steel: Experimental and computational approach. Journal of Molecular Liquids, 324, 115010. https://doi. org/10.1016/j.molliq.2020.115010
[47]. Tan, B., Zhang, S., Li, W., Zuo, X., Qiang, Y., Xu, L., Hao, J., & Chen, S. (2019). Experimental and theoretical studies on inhibition performance of Cu corrosion in 0.5 M H2SO4 by three disulfide derivatives. Journal of Industrial and Engineering Chemistry, 77, 449–460. https://doi.org/10. 1016/j.jiec.2019.05.011
[48]. Tang, Y., Zhang, F., Hu, S., Cao, Z., Wu, Z., & Jing, W. (2013). Novel benzimidazole derivatives as corrosion inhibitors of mild steel in the acidic media. Part I: Gravimetric, electrochemical, SEM and XPS studies. Corrosion Science, 74, 271–282. https://doi.org/10.1016/j. corsci.2013.04.053
[49]. Tian, H., Cheng, Y. F., Li, W., & Hou, B. (2015). Triazolylacylhydrazone derivatives as novel inhibitors for copper corrosion in chloride solutions. Corrosion Science, 100, 341–352. https://doi.org/10.1016/j.corsci.2015.08.022
[50]. Toukal, L., Keraghel, S., Benghanem, F., & Ourari, A. (2018). Electrochemical, thermodynamic and quantum chemical studies of synthesized benzimidazole derivative as an eco-friendly corrosion inhibitor for XC52 steel in h y d r o c h l o r i c a c i d . I n t e r n a t i o n a l J o u r n a l o f Electrochemical Science, 13(1), 951–974. https://doi.org/ 10.20964/2018.01.43
[51]. Walia, R., Naaz, S. F., Iqbal, K., & Lamba, H. S. (2011). Benzimidazole Derivatives – an Overview. International Journal of Research in Pharmacy and Chemistry, 1(3), 565–574.
[52]. Wang, Q., Tan, B., Bao, H., Xie, Y., Mou, Y., Li, P., Chen, D., Shi, Y., Li, X., & Yang, W. (2019). Evaluation of Ficus tikoua leaves extract as an eco-friendly corrosion inhibitor for carbon steel in HCl media. Bioelectrochemistry, 128, 49–55. https://doi.org/10.1016/j.bioelechem.2019.03.001
[53]. Wang, X. (2012). The inhibition effect of bis- Benzimidazole compound for mild steel in 0.5 M HCL solution. International Journal of Electrochemical Science, 7(11), 11149–11160.
[54]. Wang, X., Yang, H., & Wang, F. (2011). An investigation of benzimidazole derivative as corrosion inhibitor for mild steel in different concentration HCl solutions. Corrosion Science, 53(1), 113–121. https://doi.org/10.1016/j.corsci. 2010.09.029
[55]. Xu, B., Gong, W., Zhang, K., Yang, W., Liu, Y., Yin, X., Shi, H., & Chen, Y. (2015). Theoretical prediction and experimental study of 1-Butyl-2-(4-methylphenyl) benzimidazole as a novel corrosion inhibitor for mild steel in hydrochloric acid. Journal of the Taiwan Institute of Chemical Engineers, 51, 193–200. https://doi.org/10. 1016/j.jtice.2015.01.014
[56]. Yadav, M., Kumar, S., Purkait, T., Olasunkanmi, L. O., Bahadur, I., & Ebenso, E. E. (2016). Electrochemical, thermodynamic and quantum chemical studies of synthesized benzimidazole derivatives as corrosion inhibitors for N80 steel in hydrochloric acid. Journal of Molecular Liquids, 213, 122–138. https://doi.org/10.1016/j. molliq.2015.11.018
[57]. Yadav, Mahendra, Behera, D., Kumar, S., & Sinha, R. R. (2013). Experimental and quantum chemical studies on the corrosion inhibition performance of benzimidazole derivatives for mild steel in Hcl. Industrial and Engineering Chemistry Research, 52(19), 6318–6328. https://doi.org/ 10.1021/ie400099q
[58]. Zhang, D. Q., Gao, L. X., & Zhou, G. D. (2003). Synergistic effect of 2-mercapto benzimidazole and KI on copper corrosion inhibition in aerated sulfuric acid solution. Journal of Applied Electrochemistry, 33(5), 361–366. https://doi.org/10.1023/A:1024403314993
[59]. Zhang, D., Tang, Y., Qi, S., Dong, D., Cang, H., & Lu, G. (2016). The inhibition performance of long- chain alkylsubstituted benzimidazole derivatives for corrosion of mild steel in HCl. Corrosion Science, 102, 517–522. https://doi. org/10.1016/j.corsci.2015.10.002
[60]. Zhang, F., Tang, Y., Cao, Z., Jing, W., Wu, Z., & Chen, Y. (2012). Performance and theoretical study on corrosion inhibition of 2-(4-pyridyl)-benzimidazole for mild steel in hydrochloric acid. Corrosion Science, 61, 1–9. https://doi. org/10.1016/j.corsci.2012.03.045
[61]. Zhang, G. A., Hou, X. M., Hou, B. S., & Liu, H. F. (2019). Benzimidazole derivatives as novel inhibitors for the corrosion of mild steel in acidic solution: Experimental and theoretical studies. Journal of Molecular Liquids, 278, 413–427. https://doi.org/10.1016/j.molliq.2019.01.060
[62]. Zhang, J., & Li, H. (2020a). 2-(2-chlorophenyl)-1Hbenzimidazole as a new corrosion inhibitor for copper in sulfuric acid. International Journal of Electrochemical Science, 15, 5362–5372. https://doi.org/10.20964/2020. 06.63
[63]. Zhang, J., & Li, H. (2020b). Inhibition effect and mechanism of 2-(3-bromophenyl)-1-phenyl-1Hbenzimidazole on copper corrosion in acidic solution. International Journal of Electrochemical Science, 15, 4368–4378. https://doi.org/10.20964/2020.05.65
[64]. Zhou, Y., Guo, L., Zhang, S., Kaya, S., Luo, X., & Xiang, B. (2017). Corrosion control of mild steel in 0.1 M H2SO4 solution by benzimidazole and its derivatives: An experimental and theoretical study. RSC Advances, 7(39), 23961–23969. https://doi.org/10.1039/C7RA02192E
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.