References
[1]. Asif, M. K., Khan, T. A., Taj, T. A., Naeem, U., & Yakoob, S.
(2013, April). Network intrusion detection and its strategic
importance. In 2013, IEEE Business Engineering and
Industrial Applications Colloquium (BEIAC) (pp. 140-144).
IEEE. https://doi.org/10.1109/BEIAC.2013.6560100
[2]. Brownlee, J. (2016, August 31). Feature importance
and feature selection with XGBoost in Python. Machine
Learning Mastery. Retrieved from https://machinelearning
mastery.com/feature-importance-and-feature-selectionwith-
xgboost-in-python/
[3]. Buczak, A. L., & Guven, E. (2015). A survey of data
mining and machine learning methods for cyber security
intrusion detection. IEEE Communications Surveys &
Tutorials, 18(2), 1153-1176. https://doi.org/10.1109/COMST.
2015.2494502
[4]. Chen, T., & Guestrin, C. (2016, August). XGBoost: A
nd scalable tree boosting system. In Proceedings of the 22
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (pp. 785-794). https://doi.org/
10.1145/2939672.2939785
[5]. Dhaliwal, S. S., Nahid, A. A., & Abbas, R. (2018). Effective
intrusion detection system using XGBoost. Information, 9(7),
149. https://doi.org/10.3390/info9070149
[6]. Farnaaz, N., & Jabbar, M. A. (2016). Random forest
modeling for network intrusion detection system. Procedia
Computer Science, 89, 213-217. https://doi.org/10.1016/j.
procs.2016.06.047
[7]. Ingre, B., & Yadav, A. (2015, January). Performance
analysis of NSL-KDD dataset using ANN. In 2015,
International Conference on Signal Processing and
Communication Engineering Systems (pp. 92-96). IEEE.
https://doi.org/10.1109/SPACES.2015.7058223
[8]. Javaid, A., Niyaz, Q., Sun, W., & Alam, M. (2016). A deep
learning approach for network intrusion detection system. EAI
Endorsed Transactions on Security and Safety, 3(9), 21-26.
https://doi.org/10.4108/eai.3-12-2015.2262516
[9]. Khan, J. A., & Jain, N. (2016). A survey on intrusion
detection systems and classification techniques. International Journal of Scientific Research in Science,
Engineering and Technology, 2(5), 202-208.
[10]. Kuang, F., Xu, W., & Zhang, S. (2014). A novel hybrid
KPCA and SVM with GA model for intrusion detection.
Applied Soft Computing, 18, 178-184. https://doi.org/10.
1016/j.asoc.2014.01.028
[11]. Lazaris, A., & Prasanna, V. K. (2019, April). An LSTM
framework for modeling network traffic. In 2019, IFIP/IEEE
Symposium on Integrated Network and Service
Management (IM) (pp. 19-24). IEEE.
[12]. Li, W., Yi, P., Wu, Y., Pan, L., & Li, J. (2014). A new intrusion
detection system based on KNN classification algorithm in
wireless sensor network. Journal of Electrical and
Computer Engineering, 1-8. https://doi.org/10.1155/2014/
240217
[13]. Rao, K. N., Rao, K. V., & Reddy, P. P. V. G. D. (2019). An
intrusion detection model based on deep long short term
recurrent neural network. International Journal of
Engineering and Advanced Technology (IJEAT), 9(2), 2870-
2875. https://doi.org/10.35940/ijeat.B3640.129219
[14]. Reinstein, I. (2017, October 3). XGBoost a top
machine learning method on Kaggle, explained.
KDnuggets. Retrieved from https://www.kdnuggets.com/
2017/10/xgboost-top-machine-learning-method-kaggleexplained.
html
[15]. Sheikhan, M., Jadidi, Z., & Farrokhi, A. (2012). Intrusion
detection using reduced-size RNN based on feature
grouping. Neural Computing and Applications, 21(6),
1185-1190. https://doi.org/10.1007/s00521-010-0487-0
[16]. Staudemeyer, R. C. (2012). The importance of time:
Modelling network intrusions with long short-term memory
recurrent neural networks (Doctoral Dissertation). University
of Western Cape, South Africa.
[17]. Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A. R., &
Ghogho, M. (2016, October). Deep learning approach for
network intrusion detection in software defined networking.
In 2016, International Conference on Wireless Networks
and Mobile Communications (WINCOM) (pp. 258-263).
IEEE. https://doi.org/10.1109/WINCOM.2016.7777224
[18]. Tavallaee, M., Bagheri, E., Lu, W., & Ghorbani, A.A.
(2012). NSL - KDD Dataset. University of New Brunswick.
Retrieved from https://www.unb.ca/cic/datasets/nsl.html
[19]. Wang, S., Zhuo, Q., Yan, H., Li, Q., & Qi, Y. (2019). A
network traffic prediction method based on LSTM. ZTE
Communications, 17(2), 19-25. https://doi.org/10.12142/
ZTECOM.201902004
[20]. Yin, C., Zhu, Y., Fei, J., & He, X. (2017). A deep learning
approach for intrusion detection using recurrent neural
networks. IEEE Access, 5, 21954-21961. https://doi.org/10.
1109/ACCESS.2017.2762418
[21]. Zhang, J., & Zulkernine, M. (2005, October). Network
intrusion detection using random forests. In Proceedings of
3rd Annual Conference on Privacy, Security and Trust (PST
'05).
[22]. Zygmunt, Z. (2016, January 27). What is better:
Gradient-boosted trees, or a random forest? FastML.
Retrieved from https://fastml.com/what-is-better-gradientboosted-
trees-or-random-forest/