References
[1]. Abuzaghleh, O., Barkana, B. D., & Faezipour, M.
(2015). Noninvasive real-time automated skin lesion
analysis system for melanoma early detection and
prevention. IEEE Journal of Translational Engineering in
Health and Medicine, 3, 1-12. https://doi.org/10.1109/JTE
HM.2015.2419612
[2]. Aggarwal, A., Das, N., & Sreedevi, I. (2019,
November). Attention-guided deep convolutional neural
networks for skin cancer classification. In 2019, Ninth
International Conference on Image Processing Theory,
Tools and Applications (IPTA) (pp. 1-6). IEEE. https://doi.org/
10.1109/IPTA.2019.8936100
[3]. Al-Bawi, A., Al-Kaabi, K., Jeryo, M., & Al-Fatlawi, A.
(2020). CCBlock: An effective use of deep learning for
automatic diagnosis of COVID-19 using X-ray images.
Research on Biomedical Engineering, 1-10. https://doi.
org/10.1007/s42600-020-00110-7
[4]. Alquran, H., Qasmieh, I. A., Alqudah, A. M.,
Alhammouri, S., Alawneh, E., Abughazaleh, A., &
Hasayen, F. (2017, October). The melanoma skin cancer
detection and classification using support vector
machine. In 2017, IEEE Jordan Conference on Applied
Electrical Engineering and Computing Technologies
(AEECT) (pp. 1-5). IEEE. https://doi.org/10.1109/AEECT.
2017.8257738
[5]. Asif, S., Wenhui, Y., Jin, H., & Jinhai, S. (2020,
December). Classification of COVID-19 from chest X-ray
images using Deep Convolutional Neural Network. In 2020,
IEEE 6th International Conference on Computer and
Communications (ICCC) (pp. 426-433). IEEE. https://doi.
org/10.1109/ICCC51575.2020.9344870
[6]. Bassi, P. R., & Attux, R. (2021). A deep convolutional
neural network for COVID-19 detection using chest X-rays.
Research on Biomedical Engineering, 1-10. https://doi.
org/10.1007/s42600-021-00132-9
[7]. Capdehourat, G., Corez, A., Bazzano, A., Alonso, R., &
Musé, P. (2011). Toward a combined tool to assist
dermatologists in melanoma detection from dermoscopic images of pigmented skin lesions. Pattern
Recognition Letters, 32(16), 2187-2196. https://doi.org/
10.1016/j.patrec.2011.06.015
[8]. Cohen, J. P., Morrison, P., & Dao, L. (2020). COVID-19
image data collection. ArXiv Preprint. Retrieved from
https://arxiv.org/pdf/2003.11597.pdf
[9]. Demir, A., Yilmaz, F., & Kose, O. (2019, October). Early
detection of skin cancer using deep learning
architectures: Resnet-101 and Inception-v3. In 2019,
Medical Technologies Congress (TIPTEKNO) (pp. 1-4). IEEE.
https://doi.org/10.1109/TIPTEKNO47231.2019.8972045
[10]. Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D.,
Wang, W., Weyand, T., ... Adam, H. (2017). Mobilenets:
Efficient convolutional neural networks for mobile vision
applications. ArXiv Preprint. Retrieved from https://arxiv.org/
abs/1704.04861
[11]. Jain, S., & Pise, N. (2015). Computer aided
melanoma skin cancer detection using image
processing. Procedia Computer Science, 48, 735-740.
https://doi.org/10.1016/j.procs.2015.04.209
[12]. Keidar, D., Yaron, D., Goldstein, E., Shachar, Y., Blass,
A., Charbinsky, L., … Eldar, Y. C. (2021). COVID-19
classification of X-ray images using deep neural networks.
European Radiology, 1-10. https://doi.org/10.1007/s0033
0-021-08050-1
[13]. Mane, S. S., & Shinde, S. V. (2017). Different
techniques for skin cancer detection using dermoscopy
images. International Journal of Computer Sciences and
Engineering, 5(12), 165-170.
[14]. Mangal, A., Kalia, S., Rajgopal, H., Rangarajan, K.,
Namboodiri, V., Banerjee, S., & Arora, C. (2020).
COVIDAID: COVID-19 detection using chest X-Ray. ArXiv
Preprint. Retrieved from https://arxiv.org/abs/2004.09803
[15]. Moldovan, D. (2019, November). Transfer learning
based method for two-step skin cancer images
classification. In 2019, E-Health and Bioengineering
Conference (EHB) (pp. 1-4). IEEE. https://doi.org/10.1109/
EHB47216.2019.8970067
[16]. Sekeroglu, B., & Ozsahin, I. (2020). Detection of
COVID-19 from chest X-ray images using Convolutional
Neural Networks. SLAS Technology: Translating Life Sciences Innovation, 25(6), 553-565. https://doi.org/10.11
77%2F2472630320958376
[17]. Soumya, R. S., Neethu, S., Niju, T. S., Renjini, A., &
Aneesh, R. P. (2016, July). Advanced earlier melanoma
detection algorithm using colour correlogram. In 2016,
International Conference on Communication Systems
and Networks (ComNet) (pp. 190-194). IEEE. https://doi.
org/10.1109/CSN.2016.7824012
[18]. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., ... Rabinovich, A. (2015). Going deeper with
convolutions. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (pp. 1-9). https://
doi.org/10.1109/CVPR.2015.7298594
[19]. Tschandl, P., Rosendahl, C., & Kittler, H. (2018). The
HAM10000 dataset, a large collection of multi-source
dermatoscopic images of common pigmented skin
lesions. Scientific Data, 5(1), 1-9. https://doi.org/10.1038/sdata.2018.161
[20]. Wang, L., Lin, Z. Q., & Wong, A. (2020). COVID-net: A
tailored deep convolutional neural network design for
detection of COVID-19 cases from chest X-ray images.
Scientific Reports, 10(1), 1-12. https://doi.org/10.1038/s41
598-020-76550-z
[21]. Yadav, S., Sandhu, J. K., Pathak, Y., & Jadhav, S.
(2020). Chest X-ray scanning based detection of COVID-
19 using deep convolutional neural network. Retrieved
from https://assets.researchsquare.com/files/rs-58833/v1_
stamped.pdf?c=1597440025
[22]. Younis, H., Bhatti, M. H., & Azeem, M. (2019,
December). Classification of skin cancer dermoscopy
images using transfer learning. In 2019, 15th International
Conference on Emerging Technologies (ICET) (pp. 1-4).
IEEE. https://doi.org/10.1109/ICET48972.2019.8994508