References
[1]. Agaoglu, M. (2016). Predicting instructor performance
using data mining techniques in higher education. IEEE
Access, 4, 2379-2387.
[2]. Alkhasawneh, R., & Hobson, R. (2011, April). Modeling
student retention in science and engineering disciplines
using neural networks. In 2011, IEEE Global Engineering
Education Conference (EDUCON) (pp. 660-663). IEEE.
[3]. Al-Radaideh, Q. A., Al-Shawakfa, E. M., & Al-Najjar, M.
I. (2006, December). Mining student data using decision
trees. In International Arab Conference on Information
Technology (ACIT'2006).
[4]. Altujjar, Y., Altamimi, W., Al-Turaiki, I., & Al-Razgan, M.
(2016). Predicting critical courses affecting students
performance: A case study. Procedia Computer Science,
82, 65-71. https://doi.org/10.1016/j.procs.2016.04.010
[5]. Araque, F., Roldán, C., & Salguero, A. (2009). Factors
influencing university dropout rates. Computers &
Education, 53(3), 563-574. https://doi.org/10.1016/j.com
pedu.2009.03.013
[6]. Aziz, S. M., & Awlla, A. H. (2019). Performance analysis
and prediction student performance to build effective
student using data mining techniques. UHD Journal of
Science and Technology, 3(2), 10-15. https://doi.org/10.21
928/uhdjst.v3n2y2019.pp10-15
[7]. Brusilovsky, P., & Peylo, C. (2013). Adaptive and
intelligent web-based educational systems. International
Journal of Artificial Intelligence in Education, 13, 156–169.
[8]. Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence
in education: A review. IEEE Access, 8, 75264-75278.
https://doi.org/10.1109/ACCESS.2020.2988510
[9]. Guruler, H., & Istanbullu, A. (2014). Modeling student
performance in higher education using data mining. In
Educational Data Mining (pp. 105-124). Cham: Springer. https://doi.org/10.1007/978-3-319-02738-8_4
[10]. Hasan, R., Palaniappan, S., Mahmood, S., Abbas, A.,
Sarker, K. U., & Sattar, M. U. (2020). Predicting student
performance in higher educational institutions using video
learning analytics and data mining techniques. Applied
Sciences, 10(11), 3894. https://doi.org/10.3390/app1011
3894
[11]. Hussain, S., Dahan, N. A., Ba-Alwib, F. M., & Ribata, N.
(2018). Educational data mining and analysis of students'
academic performance using WEKA. Indonesian Journal
of Electrical Engineering and Computer Science, 9(2),
447-459. http://doi.org/10.11591/ijeecs.v9.i2.pp447-459
[12]. Jamil, A., Ahsan, M., Farooq, T., Hussain, A., & Ashraf,
R. (2018, September). Student performance prediction
using algorithms of data mining. In 2018, International
Conference on Computing, Engineering, and Design
(ICCED) (pp. 244-249). IEEE. https://doi.org/10.1109/ICCE
D.2018.00055
[13]. Kabakchieva, D. (2013). Predicting student
performance by using data mining methods for
classification. Cybernetics and Information Technologies,
13(1), 61-72. https://doi.org/10.2478/cait-2013-0006
[14]. Kiu, C. C. (2018, October). Data mining analysis on
student's academic performance through exploration of
student's background and social activities. In 2018, Fourth
International Conference on Advances in Computing,
Communication & Automation (ICACCA) (pp. 1-5). IEEE.
https://doi.org/10.1109/ICACCAF.2018.8776809
[15]. Mueen, A., Zafar, B., & Manzoor, U. (2016). Modeling and predicting students' academic performance using
data mining techniques. International Journal of Modern
Education and Computer Science, 8(11), 36-42.
[16]. Namratha, B., & Sharma, N. (2016). Educational data
mining–applications and techniques. International
Journal of Latest Trends in Engineering and Technology,
7(2), 484-488.
[17]. Ogor, E. N. (2007, September). Student academic
performance monitoring and evaluation using data
mining techniques. In Electronics, Robotics and
Automotive Mechanics Conference (CERMA 2007) (pp.
354-359). IEEE.
[18]. Patil, R., Salunke, S., Kalbhor, M., & Lomte, R. (2018,
August). Prediction system for student performance using
data mining classification. In 2018, Fourth International
Conference on Computing Communication Control and
Automation (ICCUBEA) (pp. 1-4). IEEE.
[19]. Quinlan, J. R. (2014). C4. 5: Programs for machine
learning. Elsevier.
[20]. Shahiria, A. M., Husaina, W., & Rashida, N. A. (2007). A
review on predicting student's performance using data
mining techniques. Procedia Computer Science, 72, 414-
422. https://doi.org/10.1016/j.procs.2015.12.157
[21]. Vijayalakshmi, B. M., & Ananthanarayanan, N. R.
(2017). Analysis of student performance in got girl higher
secondary school using data mining techniques.
International Journal of Creative Research Thoughts, 5(7),
1514-1521.