0.95Mn0.05Sm2xFe2-2xO4 and Mg0.95Mn0.05+xZrxFe2-2xO4 in which x value varies from 0.0 to 0.5. The saturation magnetization (Ms), coercivity (Hc), retentivity (Mr), remnant ratio ®, magneton number (nB) and Curie temperature values are evaluated with initial permeability. Results are explained based on the exchange interactions of magnetic ions with the existing models. Decrease of particle size has a great impact on physical parameters. Variation of saturation magnetization (Ms) and dielectric constant as a function of temperature are performed to verify the multiferroic nature of the present materials. The final results of Sm3+/Zr4+ (samarium/zirconium) substituted Mg-Mn ferrites indicated that they obey both ferroelectric and ferromagnetic nature and are considered as multiferroic materials.

">

Magnetic and Multiferroic Behaviour of Sm/Zr Substituted Mg-Mn Ferrites

G. Bhanu Praveen *, Pyla Aruna **, A. Durga Prasada Rao ***
* Chaitanya Engineering College, Visakhapatnam, Andhra Pradesh, India.
** Department of Engineering Chemistry, Andhra University, Visakhapatnam, Andhra Pradesh, India.
*** Department of Nuclear Physics, Andhra University, Visakhapatnam, Andhra Pradesh, India.
Periodicity:April - June'2021
DOI : https://doi.org/10.26634/jms.9.1.18308

Abstract

Two series of Sm/Zr substituted Mg-Mn ferrite materials with bulk and nano sizes are developed whose compositions are Mg0.95Mn0.05Sm2xFe2-2xO4 and Mg0.95Mn0.05+xZrxFe2-2xO4 in which x value varies from 0.0 to 0.5. The saturation magnetization (Ms), coercivity (Hc), retentivity (Mr), remnant ratio ®, magneton number (nB) and Curie temperature values are evaluated with initial permeability. Results are explained based on the exchange interactions of magnetic ions with the existing models. Decrease of particle size has a great impact on physical parameters. Variation of saturation magnetization (Ms) and dielectric constant as a function of temperature are performed to verify the multiferroic nature of the present materials. The final results of Sm3+/Zr4+ (samarium/zirconium) substituted Mg-Mn ferrites indicated that they obey both ferroelectric and ferromagnetic nature and are considered as multiferroic materials.

Keywords

Ferrites, Saturation Magnetization, Coercivity, Multiferroic, Curie Temperature.

How to Cite this Article?

Praveen, G. B., Aruna, P., and Rao, A. D. P. (2021). Magnetic and Multiferroic Behaviour of Sm/Zr Substituted Mg-Mn Ferrites. i-manager's Journal on Material Science, 9(1), 13-22. https://doi.org/10.26634/jms.9.1.18308

References

[1]. Alamolhoda, S., Mirkazemi, S. M., Benvidi, N., & Shahjooyi, T. (2016). The effects of Cu and Zn dopants on phase constituents, magnetic properties and microstructure of nickel ferrite. International Journal of Nanoscience and Nanotechnology, 12(3), 131-137.
[2]. Albert-Schoenberg, E. (1954). Ferrites POR microwaves circuits and digital computers. Journal of Applied Physics, 25, 152. https://doi.org/10.1063/1.1721594
[3]. Batoo, K. M., Kumar, S., Prakash, R., Song, J. I., Chung, H., Jeong, H., ... Lee, C. G. (2010). Mössbauer spectra of MnFe2− 2xAl2xO4 (0≼ x≼ 0.4) ferrites. Journal of Central South University of Technology, 17(6), 1129-1132. https://doi.org/10.1007/s11771-010-0607-0
[4]. Battle, P. D., Goodenough, J. B., & Price, R. (1983). The crystal structures and magnetic properties of Ba2LaRuO6 and Ca2LaRuO6. Journal of Solid State Chemistry, 46(2), 234-244. https://doi.org/10.1016/0022-4596(83)90147-0
[5]. Bhise, B. V., Dongare, M. B., Patil, S. A., & Sawant, S. R. (1991). X-ray infrared and magnetization studies on Mn substituted Ni-Zn ferrites. Journal of Materials Science Letters, 10(15), 922-924. https://doi.org/10.1007/Bf00724783
[6]. Calvo-de la Rosa, J., & Segarra, M. (2019). Optimization of the synthesis of copper ferrite nanoparticles by a polymerassisted sol–gel method. ACS Omega, 4(19), 18289-18298. https://doi.org/10.1021/acsomega.9b02295
[7]. Cullity, B D., & Graham, C. (2009). Introduction to Magnetic Materials. Hoboken, NJ: John Wiley & Sons.
[8]. Gao, Y., Lim, J., Teoh, S. H., & Xu, C. (2015). Emerging translational research on magnetic nanoparticles for regenerative medicine. Chemical Society Reviews, 44(17), 6306-6329. https://doi.org/10.1039/C4CS00322E
[9]. Guo, L., Shen, X., Meng, X., & Feng, Y. (2010). Effect of Sm3+ ions doping on structure and magnetic properties of nanocrystalline NiFe2O4 fibers. Journal of Alloys and Compounds, 490(1-2), 301-306. https://doi.org/10.1016/j. jallcom.2009.09.182
[10]. Herzer, G. (2013). Modern soft magnets: Amorphous and nanocrystalline materials. Acta Materialia, 61(3), 718- 734. https://doi.org/10.1016/j.actamat.2012.10.040
[11]. Jadhav, S. S., Shirsath, S. E., Patange, S. M., & Jadhav, K. M. (2010). Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrite. Journal of Applied Physics, 108(9), 1-7. https://doi.org/10.1063/1.34 99346
[12]. Józefczak, A., Kaczmarek, K., Hornowski, T., Kubovčíková, M., Rozynek, Z., Timko, M., & Skumiel, A. (2016). Magnetic nanoparticles for enhancing the effectiveness of ultrasonic hyperthermia. Applied Physics Letters, 108(26), 1-5. https://doi.org/10.1063/1.4955130
[13]. Karche, B. R., Khasbardar, B. V., & Vaingankar, A. S. (1997). X-ray, SEM and magnetic properties of MgCd ferrites. Journal of Magnetism and Magnetic Materials, 168(3), 292-298. https://doi.org/10.1016/S0304-8853(96) 00705-6
[14]. Kishan, P., Prakash, C., Baijal, J. S., & Laroia, K. K. (1984). Moessbauer studies on hyperfine interactions in titanium substituted lithium ferrites. Physica Status Solidi (A), 84(2), 535-540. https://doi.org/10.1002/pssa.2210840224
[15]. Kobayashi, K. I., Kimura, T., Sawada, H., Terakura, K., & Tokura, Y. (1998). Room-temperature magneto resistance in an oxide material with an ordered doubleperovskite structure. Nature, 395(6703), 677-680. https://doi.org/10.1038/27167
[16]. Kodama, R. H. (1999). Magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 200(1-3), 359-372. https://doi.org/10.1016/S0304-8853(99)00347-9
[17]. Kumar, A., Kumar, P., Rana, G., Yadav, M. S., & Pant, R. P. (2015). A study on structural and magnetic properties of NixZn1-xFe2O4 (0 ≤ x ≤ 0.6) ferrite nanoparticles. Applied  Science Letters, 1(2), 33-36. https://doi.org/10.17571/apps lett.2015.01009
[18]. Kumar, G., Kanthwal, M., Chauhan, B. S., & Singh, M. (2006). Cation distribution in mixed Mg-Mn ferrites system from X-ray diffraction technique and saturation magnetization. Indian Journal of Pure & Applied Physics, 44, 930-934.
[19]. Kumar, S., Batoo, K. M., Gautam, S., Koo, B. H., Chae, K. H., Chung, H., & Lee, C. G. (2011). Electronic structure and magnetic properties of the Ni0.2Cd0.3Fe2.5−xAlxO4 (0≤ x≤ 0.4) ferrite nanoparticles. Journal of Nanoscience and Nanotechnology, 11(1), 396-401. https://doi.org/10.1166/jnn.2011.3262
[20]. Kumar, S., Kumar, R., Dogra, A., Reddy, V. R., & Banerjee, A. (2007). Multiferroic behaviour of Ti doped Mg0.95Mn0.05Fe2O4. Indian Journal of Pure & Applied Physics, 45(1), 31-36.
[21]. Kumar, S., Kumar, R., Thakur, P., Chae, K. H., & Sharma, S. K. (2008). Electronic structure studies of Mg0.95Mn0.05Fe2-2x Ti2xO4(0≤x≤0.8). Journal of Magnetism and Magnetic Materials, 320(14), 121–124. https://doi.org/10. 1016/j.jmmm.2008.02.035
[22]. Le-Floc'h, M. (1989). Effects of parallel compressions on ring-shaped polycrystalline ferrimagnetic samples. Journal of Applied Physics, 66(3), 1279-1284. https://doi. org/10.1063/1.344426
[23]. Maria, L., Sonia, M., Pauline, S., & Mary, N L. (2014). Effect of samarium substitution on the structural, morphological and magnetic properties of nanocrystalline nickel ferrites. International Journal of Advance Research in Science, Engineering & Technology, 3(9), 130-139.
[24]. Markandeya, Y., Suresh Reddy, Y., Manjula Devi, A., Suresh, K., & Bhikshamaiah, G. (2016). Effect of galium doping on structural, magnetic and transport properties of ordered Ba2FeMoO6 double perovskite. IOP Conference Series Material Science & Engineering, 73(1). https://doi. org/10.1088/1757-899X/73/1/012097
[25]. Niemirowicz, K., Markiewicz, K. H., Wilczewska, A. Z., & Car, H. (2012). Magnetic nanoparticles as new diagnostic tools in medicine. Advances in Medical Sciences, 57(2), 196-207. https://doi.org/10.2478/v10039-012-0031-9
[26]. Niihara, K. (1991). New design concept of structural ceramics ceramic nanocomposites. Journal of the Ceramic Society of Japan, 99(1154), 974-982. https://doi. org/10.2109/jcersj.99.974
[27]. Panda, R. N., Shih, J. C., & Chin, T. S. (2003). Magnetic properties of nano-crystalline Gd-or Pr-substituted CoFe2O4 synthesized by the citrate precursor technique. Journal of Magnetism and Magnetic Materials, 257(1), 79-86. https:// doi.org/10.1016/S0304-8853(02)01036-3
[28]. Peng, J., Hojamberdiev, M., Xu, Y., Cao, B., Wang, J., & Wu, H. (2011). Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 323(1), 133-137. https://doi.org/10.1016/j.jmmm.2010.08.048
[29]. Phanjoubam, S., Shivaji, C., & Devi, L. R. (1997). Magnetic properties of Ti4+ substituted Li-Zn ferrites. Indian Journal of Physics, 71, 505-510.
[30]. Praveen, G. B., & Rao, A. D. P. (2019). Structural studies of Sm/Zr substituted Mg-Mn ferrites. Chemical Science, 8(2), 146-159. https://doi.org/10.7598/cst2019.1564
[31]. Praveen, G. B., & Rao, A. D. P. (2018). Influence of Sm/Zr on spectroscopic properties of Mg-Mn ferrites. i-manager's Journal on Material Science, 6(1), 20-30. https://doi.org/ 10.26634/jms.6.1.14067
[32]. Praveen, G. B., & Rao, A. D. P. (2019). Dielectric properties of Sm/Zr substituted Mg-Mn Ferrites. i-manager's Journal on Material Science, 6(4), 11-32. https://doi.org/ 10.26634/jms.6.4.14882
[33]. Raghasudha, M., Ravinder, D., & Veerasomaiah. (2013). Characterization of chromium substituted cobalt nano ferries synthesized by Citrate-Gel auto combustion method. Advances in Materials Physics & Chemistry, 3(2), 89-96. https://doi.org/10.4236/ampc.2013.32014
[34]. Rashad, M. M., Mohamed, R. M., & El-Shall, H. (2008). Magnetic properties of nanocrystalline Sm-substituted CoFe2O4 synthesized by citrate precursor method. Journal of Materials Processing Technology, 198(1-3), 139-146. https://doi.org/10.1016/j.jmatprotec.2007.07.012
[35]. Rezlescu, E., Sachelarie, L., Popa, P. D., & Rezlescu, N. (2000). Effect of substitution of divalent ions on the electrical and magnetic properties of Ni-Zn-Me ferrites. IEEE Transactions on Magnetics, 36(6), 3962-3967. https://doi. org/10.1109/20.914348
[36]. Rezlescu, N., Rezlescu, E., Tudorache, F., & Popa, P. D. (2004). MgCu nanocrystalline ceramic with La3+ and Y3+ ionic substitutions used as humidity sensor. Journal of Optoelectronics and Advanced Materials, 6, 695-698.
[37]. Rittel, D. (2000). An investigation of the heat generated during cyclic loading of two glassy polymers. Part I: Experimental. Mechanics of Materials, 32(3), 131- 147. https://doi.org/10.1016/S0167-6636(99)00051-4
[38]. Sattar, A. A., Wafik, A. H., El-Shokrofy, K. M., & El-Tabby, M. M. (1999). Magnetic properties of Cu–Zn ferrites doped with rare earth oxides. Physica Status Solidi (A), 171(2), 563- 569. https://doi.org/10.1002/(SICI)1521-396X(199902)171: 2<563::AID-PSSA563>3.0.CO;2-K
[39]. Sharma, K., Raghavendra Reddy, V., Gupta, A., Choudhary, R. J., Phase, D. M., & Ganesan, V. (2013). Study of site-disorder in epitaxial magneto-electric GaFeO3 thin films. Applied Physics Letters, 102(21), 1-5. https://doi. org/10.1063/1.4807757
[40]. Shin, S. C. (1964). Physics of Magnetism. John Wiley and Sons Inc.
[41]. Sivakumar, N., Narayanasamy, A., Greneche, J. M., Murugaraj, R., & Lee, Y. S. (2010). Electrical and magnetic behaviour of nanostructured MgFe2O4 spinel ferrite. Journal of Alloys and Compounds, 504(2), 395-402. https://doi.org/ 10.1016/j.jallcom.2010.05.125
[42]. Tahar, L. B., Smiri, L. S., Artus, M., Joudrier, L., Herbst, F., Vaulay, M. J., … Fievet, F. (2007). Characterization and magnetic properties of samarium and gadolinium substituted CoFe2O4 nanoparticles prepared by forced hydrolysis in polyol. Material Research Bulletin, 42(11), 1888-1896. https://doi.org/10.1016/j.materresbull.2006. 12.014
[43]. Tahar, L. B., Artus, M., Ammar, S., Smiri, L. S., Herbst, F., Vaulay, M. J., ... Fiévet, F. (2008). Magnetic properties of CoFe1.9RE0.1O4 nanoparticles (RE= La, Ce, Nd, Sm, Eu, Gd, Tb, Ho) prepared in polyol. Journal of Magnetism and Magnetic Materials, 320(23), 3242-3250. https://doi.org/ 10.1016/j.jmmm.2008.06.031
[44]. Thankachan, S., Jacob, B P., Xavier, S., & Mohammed, E M. (2013). Effect of neodymium substitution on structural and magnetic properties of magnesium ferrite nanoparticles. Physica Scripta, 87(2), 25701. https://doi. org/10.1088/0031-8949/87/02/025701
[45]. Venkatesh, N., Sunder, S. G., Kumar, N. H., Aravind, G., Ravinder, D., & Somaiah, P. V. (2015). Characterization of rare earth material samarium substituted magnesium nano ferrites synthesized by citrate-gel auto combustion method. IOSR Journal of Applied Chemistry, 8(5), 22-27.
[46]. Wang, W., Ding, Z., Zhao, X., Wu, S., Li, F., Yue, M., & Liu, J. P. (2015). Microstructure and magnetic properties of MFe2O4 (M= Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method. Journal of Applied Physics, 117(17), 17A328. https://doi.org/10.1063/ 1.4917463
[47]. Xavier, S., Thankachan, S., Jacob, B. P., & Mohammed, E. M. (2013). Effect of samarium substitution on the structural and magnetic properties of nanocrystalline cobalt ferrite. Journal of Nanoscience, 1-8. https://doi.org/ 10.1155/2013/524380
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.