[1]. Alamolhoda, S., Mirkazemi, S. M., Benvidi, N., & Shahjooyi, T. (2016). The effects of Cu and Zn dopants on phase constituents, magnetic properties and microstructure of nickel ferrite. International Journal of Nanoscience and Nanotechnology, 12(3), 131-137.
[2]. Albert-Schoenberg, E. (1954). Ferrites POR microwaves circuits and digital computers. Journal of Applied Physics, 25, 152. https://doi.org/10.1063/1.1721594
[3]. Batoo, K. M., Kumar, S., Prakash, R., Song, J. I., Chung, H., Jeong, H., ... Lee, C. G. (2010). Mössbauer spectra of MnFe2− 2xAl2xO4 (0≼ x≼ 0.4) ferrites. Journal of Central South University of Technology, 17(6), 1129-1132. https://doi.org/10.1007/s11771-010-0607-0
[4]. Battle, P. D., Goodenough, J. B., & Price, R. (1983). The crystal structures and magnetic properties of Ba2LaRuO6 and Ca2LaRuO6. Journal of Solid State Chemistry, 46(2), 234-244. https://doi.org/10.1016/0022-4596(83)90147-0
[5]. Bhise, B. V., Dongare, M. B., Patil, S. A., & Sawant, S. R. (1991). X-ray infrared and magnetization studies on Mn substituted Ni-Zn ferrites. Journal of Materials Science Letters, 10(15), 922-924. https://doi.org/10.1007/Bf00724783
[6]. Calvo-de la Rosa, J., & Segarra, M. (2019). Optimization of the synthesis of copper ferrite nanoparticles by a polymerassisted sol–gel method. ACS Omega, 4(19), 18289-18298. https://doi.org/10.1021/acsomega.9b02295
[7]. Cullity, B D., & Graham, C. (2009). Introduction to Magnetic Materials. Hoboken, NJ: John Wiley & Sons.
[8]. Gao, Y., Lim, J., Teoh, S. H., & Xu, C. (2015). Emerging translational research on magnetic nanoparticles for regenerative medicine. Chemical Society Reviews, 44(17), 6306-6329. https://doi.org/10.1039/C4CS00322E
[9]. Guo, L., Shen, X., Meng, X., & Feng, Y. (2010). Effect of Sm
3+ ions doping on structure and magnetic properties of nanocrystalline NiFe
2O
4 fibers. Journal of Alloys and Compounds, 490(1-2), 301-306. https://doi.org/10.1016/j. jallcom.2009.09.182
[10]. Herzer, G. (2013). Modern soft magnets: Amorphous and nanocrystalline materials. Acta Materialia, 61(3), 718- 734. https://doi.org/10.1016/j.actamat.2012.10.040
[11]. Jadhav, S. S., Shirsath, S. E., Patange, S. M., & Jadhav, K. M. (2010). Effect of Zn substitution on magnetic properties of nanocrystalline cobalt ferrite. Journal of Applied Physics, 108(9), 1-7. https://doi.org/10.1063/1.34 99346
[12]. Józefczak, A., Kaczmarek, K., Hornowski, T., Kubovčíková, M., Rozynek, Z., Timko, M., & Skumiel, A. (2016). Magnetic nanoparticles for enhancing the effectiveness of ultrasonic hyperthermia. Applied Physics Letters, 108(26), 1-5. https://doi.org/10.1063/1.4955130
[13]. Karche, B. R., Khasbardar, B. V., & Vaingankar, A. S. (1997). X-ray, SEM and magnetic properties of MgCd ferrites. Journal of Magnetism and Magnetic Materials, 168(3), 292-298. https://doi.org/10.1016/S0304-8853(96) 00705-6
[14]. Kishan, P., Prakash, C., Baijal, J. S., & Laroia, K. K. (1984). Moessbauer studies on hyperfine interactions in titanium substituted lithium ferrites. Physica Status Solidi (A), 84(2), 535-540. https://doi.org/10.1002/pssa.2210840224
[15]. Kobayashi, K. I., Kimura, T., Sawada, H., Terakura, K., & Tokura, Y. (1998). Room-temperature magneto resistance in an oxide material with an ordered doubleperovskite structure. Nature, 395(6703), 677-680. https://doi.org/10.1038/27167
[16]. Kodama, R. H. (1999). Magnetic nanoparticles. Journal of Magnetism and Magnetic Materials, 200(1-3), 359-372. https://doi.org/10.1016/S0304-8853(99)00347-9
[17]. Kumar, A., Kumar, P., Rana, G., Yadav, M. S., & Pant, R. P. (2015). A study on structural and magnetic properties of NixZn1-xFe2O4 (0 ≤ x ≤ 0.6) ferrite nanoparticles. Applied Science Letters, 1(2), 33-36. https://doi.org/10.17571/apps lett.2015.01009
[18]. Kumar, G., Kanthwal, M., Chauhan, B. S., & Singh, M. (2006). Cation distribution in mixed Mg-Mn ferrites system from X-ray diffraction technique and saturation magnetization. Indian Journal of Pure & Applied Physics, 44, 930-934.
[19]. Kumar, S., Batoo, K. M., Gautam, S., Koo, B. H., Chae, K. H., Chung, H., & Lee, C. G. (2011). Electronic structure and magnetic properties of the Ni0.2Cd0.3Fe2.5−xAlxO4 (0≤ x≤ 0.4) ferrite nanoparticles. Journal of Nanoscience and Nanotechnology, 11(1), 396-401. https://doi.org/10.1166/jnn.2011.3262
[20]. Kumar, S., Kumar, R., Dogra, A., Reddy, V. R., & Banerjee, A. (2007). Multiferroic behaviour of Ti doped Mg0.95Mn0.05Fe2O4. Indian Journal of Pure & Applied Physics, 45(1), 31-36.
[21]. Kumar, S., Kumar, R., Thakur, P., Chae, K. H., & Sharma, S. K. (2008). Electronic structure studies of Mg0.95Mn0.05Fe2-2x Ti2xO4(0≤x≤0.8). Journal of Magnetism and Magnetic Materials, 320(14), 121–124. https://doi.org/10. 1016/j.jmmm.2008.02.035
[22]. Le-Floc'h, M. (1989). Effects of parallel compressions on ring-shaped polycrystalline ferrimagnetic samples. Journal of Applied Physics, 66(3), 1279-1284. https://doi. org/10.1063/1.344426
[23]. Maria, L., Sonia, M., Pauline, S., & Mary, N L. (2014). Effect of samarium substitution on the structural, morphological and magnetic properties of nanocrystalline nickel ferrites. International Journal of Advance Research in Science, Engineering & Technology, 3(9), 130-139.
[24]. Markandeya, Y., Suresh Reddy, Y., Manjula Devi, A., Suresh, K., & Bhikshamaiah, G. (2016). Effect of galium doping on structural, magnetic and transport properties of ordered Ba2FeMoO6 double perovskite. IOP Conference Series Material Science & Engineering, 73(1). https://doi. org/10.1088/1757-899X/73/1/012097
[25]. Niemirowicz, K., Markiewicz, K. H., Wilczewska, A. Z., & Car, H. (2012). Magnetic nanoparticles as new diagnostic tools in medicine. Advances in Medical Sciences, 57(2), 196-207. https://doi.org/10.2478/v10039-012-0031-9
[26]. Niihara, K. (1991). New design concept of structural ceramics ceramic nanocomposites. Journal of the Ceramic Society of Japan, 99(1154), 974-982. https://doi. org/10.2109/jcersj.99.974
[27]. Panda, R. N., Shih, J. C., & Chin, T. S. (2003). Magnetic properties of nano-crystalline Gd-or Pr-substituted CoFe2O4 synthesized by the citrate precursor technique. Journal of Magnetism and Magnetic Materials, 257(1), 79-86. https:// doi.org/10.1016/S0304-8853(02)01036-3
[28]. Peng, J., Hojamberdiev, M., Xu, Y., Cao, B., Wang, J., & Wu, H. (2011). Hydrothermal synthesis and magnetic properties of gadolinium-doped CoFe2O4 nanoparticles. Journal of Magnetism and Magnetic Materials, 323(1), 133-137. https://doi.org/10.1016/j.jmmm.2010.08.048
[29]. Phanjoubam, S., Shivaji, C., & Devi, L. R. (1997). Magnetic properties of Ti4+ substituted Li-Zn ferrites. Indian Journal of Physics, 71, 505-510.
[30]. Praveen, G. B., & Rao, A. D. P. (2019). Structural studies of Sm/Zr substituted Mg-Mn ferrites. Chemical Science, 8(2), 146-159. https://doi.org/10.7598/cst2019.1564
[31]. Praveen, G. B., & Rao, A. D. P. (2018). Influence of Sm/Zr on spectroscopic properties of Mg-Mn ferrites. i-manager's Journal on Material Science, 6(1), 20-30. https://doi.org/ 10.26634/jms.6.1.14067
[32]. Praveen, G. B., & Rao, A. D. P. (2019). Dielectric properties of Sm/Zr substituted Mg-Mn Ferrites. i-manager's Journal on Material Science, 6(4), 11-32. https://doi.org/ 10.26634/jms.6.4.14882
[33]. Raghasudha, M., Ravinder, D., & Veerasomaiah. (2013). Characterization of chromium substituted cobalt nano ferries synthesized by Citrate-Gel auto combustion method. Advances in Materials Physics & Chemistry, 3(2), 89-96. https://doi.org/10.4236/ampc.2013.32014
[34]. Rashad, M. M., Mohamed, R. M., & El-Shall, H. (2008). Magnetic properties of nanocrystalline Sm-substituted CoFe2O4 synthesized by citrate precursor method. Journal of Materials Processing Technology, 198(1-3), 139-146. https://doi.org/10.1016/j.jmatprotec.2007.07.012
[35]. Rezlescu, E., Sachelarie, L., Popa, P. D., & Rezlescu, N. (2000). Effect of substitution of divalent ions on the electrical and magnetic properties of Ni-Zn-Me ferrites. IEEE Transactions on Magnetics, 36(6), 3962-3967. https://doi. org/10.1109/20.914348
[36]. Rezlescu, N., Rezlescu, E., Tudorache, F., & Popa, P. D. (2004). MgCu nanocrystalline ceramic with La3+ and Y3+ ionic substitutions used as humidity sensor. Journal of Optoelectronics and Advanced Materials, 6, 695-698.
[37]. Rittel, D. (2000). An investigation of the heat generated during cyclic loading of two glassy polymers. Part I: Experimental. Mechanics of Materials, 32(3), 131- 147. https://doi.org/10.1016/S0167-6636(99)00051-4
[38]. Sattar, A. A., Wafik, A. H., El-Shokrofy, K. M., & El-Tabby, M. M. (1999). Magnetic properties of Cu–Zn ferrites doped with rare earth oxides. Physica Status Solidi (A), 171(2), 563- 569. https://doi.org/10.1002/(SICI)1521-396X(199902)171: 2<563::AID-PSSA563>3.0.CO;2-K
[39]. Sharma, K., Raghavendra Reddy, V., Gupta, A., Choudhary, R. J., Phase, D. M., & Ganesan, V. (2013). Study of site-disorder in epitaxial magneto-electric GaFeO3 thin films. Applied Physics Letters, 102(21), 1-5. https://doi. org/10.1063/1.4807757
[40]. Shin, S. C. (1964). Physics of Magnetism. John Wiley and Sons Inc.
[41]. Sivakumar, N., Narayanasamy, A., Greneche, J. M., Murugaraj, R., & Lee, Y. S. (2010). Electrical and magnetic behaviour of nanostructured MgFe2O4 spinel ferrite. Journal of Alloys and Compounds, 504(2), 395-402. https://doi.org/ 10.1016/j.jallcom.2010.05.125
[42]. Tahar, L. B., Smiri, L. S., Artus, M., Joudrier, L., Herbst, F., Vaulay, M. J., … Fievet, F. (2007). Characterization and magnetic properties of samarium and gadolinium substituted CoFe2O4 nanoparticles prepared by forced hydrolysis in polyol. Material Research Bulletin, 42(11), 1888-1896. https://doi.org/10.1016/j.materresbull.2006. 12.014
[43]. Tahar, L. B., Artus, M., Ammar, S., Smiri, L. S., Herbst, F., Vaulay, M. J., ... Fiévet, F. (2008). Magnetic properties of CoFe1.9RE0.1O4 nanoparticles (RE= La, Ce, Nd, Sm, Eu, Gd, Tb, Ho) prepared in polyol. Journal of Magnetism and Magnetic Materials, 320(23), 3242-3250. https://doi.org/ 10.1016/j.jmmm.2008.06.031
[44]. Thankachan, S., Jacob, B P., Xavier, S., & Mohammed, E M. (2013). Effect of neodymium substitution on structural and magnetic properties of magnesium ferrite nanoparticles. Physica Scripta, 87(2), 25701. https://doi. org/10.1088/0031-8949/87/02/025701
[45]. Venkatesh, N., Sunder, S. G., Kumar, N. H., Aravind, G., Ravinder, D., & Somaiah, P. V. (2015). Characterization of rare earth material samarium substituted magnesium nano ferrites synthesized by citrate-gel auto combustion method. IOSR Journal of Applied Chemistry, 8(5), 22-27.
[46]. Wang, W., Ding, Z., Zhao, X., Wu, S., Li, F., Yue, M., & Liu, J. P. (2015). Microstructure and magnetic properties of MFe2O4 (M= Co, Ni, and Mn) ferrite nanocrystals prepared using colloid mill and hydrothermal method. Journal of Applied Physics, 117(17), 17A328. https://doi.org/10.1063/ 1.4917463
[47]. Xavier, S., Thankachan, S., Jacob, B. P., & Mohammed, E. M. (2013). Effect of samarium substitution on the structural and magnetic properties of nanocrystalline cobalt ferrite. Journal of Nanoscience, 1-8. https://doi.org/ 10.1155/2013/524380