References
[1]. Ademoh, N. A., & Olabisi, A. I. (2015). Development and evaluation of maize husks (asbestos-free) based brake pad. Industrial Engineering Letters-IEL, 5(2), 67–80.
[2]. ASTM International. (2003). ASTM D790-03: Standard test methods for flexural properties of unreinforced and reinforced plastics and electrical insulating materials. West Conshohocken, PA: American Society for Testing and Materials.
[3]. Blau, P. J. (2001). Composition, testing and functions of friction brake materials and their additives. Oak Ridge, Tennessee: Oak Ridge National Laboratory. Retrieved from https://info.ornl.gov/sites/publications/Files/Pub57043.pdf
[4]. Borawski, A. (2020). Conventional and unconventional materials used in the production of brake pads–review. Science and Engineering of Composite Materials, 27(1), 374-396.
[5]. Dagwa, I. M., & Ibhadode, A. O. A. (2006). Determination of optimum manufacturing conditions for asbestos-free brake pad using Taguchi method. Nigerian Journal of Engineering Research and Development, 5(4), 1–8.
[6]. Edokpia, R. O., Aigbodion, V. S., Atuanya, C. U., Agunsoye, J. O., & Mu'azu, K. (2016). Experimental study of the properties of brake pad using egg shell particles–Gum Arabic composites. Journal of the Chinese Advanced Materials Society, 4(2), 172-184. https://doi.org/10.1080/ 22243682.2015.1100523
[7]. El-Tayeb, N. S. M., & Liew, K. W. (2009). On the dry and wet sliding performance of potentially new frictional brake pad materials for automotive industry. Wear, 266(1-2), 275- 287. https://doi.org/10.1016/j.wear.2008.07.003
[8]. Kim, S. J., Cho, M. H., Lim, D. S., & Jang, H. (2001). Synergistic effects of aramid pulp and potassium titanate whiskers in the automotive friction material. Wear, 251(1- 12), 1484-1491. https://doi.org/10.1016/S0043-1648(01) 00802-X
[9]. Kumar, M., & Bijwe, J. (2011). Composite friction materials based on metallic fillers: Sensitivity of μ to operating variables. Tribology International, 44(2), 106- 113. https://doi.org/10.1016/j.triboint.2010.09.013
[10]. Loewenstein, K. L. (1993). The Manufacturing Technology of Continuous Glass Fibers (3rd ed.). Elsevier.
[11]. Olupona, J. A., Abodunwa, J. A., & Fayoyin, F. K. (2003). Response of laying hens to graded levels of cocoa th bean shells. In Proceedings of the 28 Annual Conference Nigerian Society for Animal Production (NSAP) (Vol. 28, pp. 247–249).
[12]. Shojaei, A., Fahimian, M., & Derakhshandeh, B. (2007). Thermally conductive rubber-based composite friction materials for railroad brakes–Thermal conduction characteristics. Composites Science and Technology, 67(13), 2665-2674. https://doi.org/10.1016/j.compscitech. 2007.03.009
[13]. Tanaka, K., Ueda, S., & Noguchi, N. (1973). Fundamental studies on the brake friction of resin-based friction materials. Wear, 23(3), 349-365. https://doi.org/10. 1016/0043-1648(73)90022-7
[14]. Wallenberger, F. T. (1994). Melt viscosity and modulus of bulk glasses and fibers: challenges for the next decade, in present state and future prospects of glass science and technology. In Proceedings of the Norbert Kreidl Symposium (Triesenberg, Liechtenstein) (Vol. 70(c), pp. 63–78).
[15]. Yawas, D. S., Aku, S. Y., & Amaren, S. G. (2016). Morphology and properties of periwinkle shell asbestos-free brake pad. Journal of King Saud University-Engineering Sciences, 28(1), 103-109. https://doi.org/10.1016/j.jksues. 2013.11.002
[16]. Yi, G., & Yan, F. (2007). Mechanical and tribological properties of phenolic resin-based friction composites filled with several inorganic fillers. Wear, 262(1-2), 121-129. https://doi.org/10.1016/j.wear.2006.04.004