References
[1]. Antonio-Mendez, R., de la Cruz-Alejo, J., & Peñaloza-
Mejia, O. (2015). Fuzzy logic control on FPGA for solar
tracking system. In Multibody Mechatronic Systems (pp. 11-
21). Springer, Cham. https://doi.org/10.1007/978-3-319-
09858-6_2
[2]. Bou-Rabee, M., Sulaiman, S. A., Saleh, M. S., & Marafi,
S. (2017). Using artificial neural networks to estimate solar
radiation in Kuwait. Renewable and Sustainable Energy
Reviews, 72, 434-438. https://doi.org/10.1016/j.rser.2017.
01.013
[3]. De Soto, W., Klein, S. A., & Beckman, W. A. (2006).
Improvement and validation of a model for photovoltaic
array performance. Solar Energy, 80(1), 78-88. https://doi.
org/10.1016/j.solener.2005.06.010
[4]. Driesse, A., Harrison, S., & Jain, P. (2007, June).
Evaluating the effectiveness of maximum power point
tracking methods in photovoltaic power systems using
array performance models. In 2007, IEEE Power Electronics
Specialists Conference (pp. 145-151). IEEE. https://doi.org/
10.1109/PESC.2007.4341978
[5]. El Shenawy, E. T., Kamal, M., & Mohamad, M. A. (2012).
Artificial intelligent control of solar tracking system. Journal
of Applied Sciences Research, 8(8), 3971-3984.
[6]. Huang, C. H., Pan, H. Y., & Lin, K. C. (2016).
Development of intelligent fuzzy controller for a two-axis
solar tracking system. Applied Sciences, 6(5), 130. https://
doi.org/10.3390/app6050130
[7]. Lasnier, F., & Ang, T. G. (2017). Photovoltaic engineering
handbook. Routledge, USA.
[8]. Lee, H. H., Dzung, P. Q., & Vu, N. T. D. (2010, November).
The new maximum power point tracking algorithm using
ANN-based solar PV systems. In TENCON 2010 IEEE Region
10 Conference (pp. 2179-2184). IEEE. https://doi.org/10.
1109/TENCON.2010.5686721
[9]. Lee, S. J., Park, H. Y., Kim, G. H., Seo, H. R., Ali, M. H.,
Park, M., & Yu, I. K. (2007, October). The experimental
analysis of the grid-connected PV system applied by POS
MPPT. In 2007, International Conference on Electrical
Machines and Systems (ICEMS) (pp. 1786-1791). IEEE.
https://doi.org/10.1109/ICEMS12746.2007.4412095
[10]. Loschi, H. J., Iano, Y., León, J., Moretti, A., Conte, F. D.,
& Braga, H. (2015). A review on photovoltaic systems:
Mechanisms and methods for irradiation tracking and
prediction. Smart Grid and Renewable Energy. https://doi.
org/10.4236/sgre.2015.67017
[11]. Nadia, A. R., Isa, N. A. M., & Desa, M. K. M. (2020).
Efficient single and dual axis solar tracking system
controllers based on adaptive neural fuzzy inference
system. Journal of King Saud University-Engineering
Sciences, 32(7), 459-469. https://doi.org/10.1016/j.jksues.
2020.04.004
[12]. Rauschenbach, H. S. (1980). Solar cell array design
handbook - The principles and technology of photovoltaic
energy conversion. NY: Van Nostrand Reinhold
[13]. Salas, V., Olias, E., Barrado, A., & Lazaro, A. (2006).
Review of the maximum power point tracking algorithms for
stand-alone photovoltaic systems. Solar Energy Materials
and Solar Cells, 90(11), 1555-1578. https://doi.org/10.
1016/j.solmat.2005.10.023
[14]. Sen, Z. (2008). Solar energy fundamentals and
modeling techniques: atmosphere, environment, climate
change and renewable energy. Springer Science &
Business Media.
[15]. Sun, Y., Li, S., Lin, B., Fu, X., Ramezani, M., & Jaithwa, I. (2017). Artificial neural network for control and grid
integration of residential solar photovoltaic systems. IEEE
Transactions on Sustainable Energy, 8(4), 1484-1495.
https://doi.org/10.1109/TSTE.2017.2691669
[16]. Villalva, M. G., Gazoli, J. R., & Ruppert Filho, E. (2009). Comprehensive approach to modeling and simulation of
photovoltaic arrays. IEEE Transactions on Power Electronics,
24(5), 1198-1208. https://doi.org/10.1109/TPEL.2009.2013
862.