2-Al2O3 by varying weight percentage of reinforcement from 0 to 5% of zirconium oxide (ZrO2) and aluminium oxide (Al2O3), and hybrid composite were fabricated by stir casting process. The hybrid metal matrix composites were subjected to different mechanical test to determine tensile, hardness and impact tests, and the samples used were machined from the fabricated parent composite in accordance with the ASTM standard. When compared with the base hybrid composite alloy matrix, the tensile strength, hardness, and impact strength of the hybrid composite increased by 24.3 %, 25 % and 0.7 % with the reinforcement addition of ZrO2 by 3% weight and Al2O3 by 2% weight. It has been observedthat, improvement in the impact strength were low, due to highly brittle nature of reinforcement particle, and it resisted the percentage elongation of metal matrix composites (MMCs) and ensured that there is good bonding between matrix and reinforcement particle.
">In the recent years, metal matrix composites play a vital role in the automobile and aerospace industries due to its high strength to low weight. This research is focused on evaluation of mechanical properties of hybrid metal matrix composite of Al6061-ZrO2-Al2O3 by varying weight percentage of reinforcement from 0 to 5% of zirconium oxide (ZrO2) and aluminium oxide (Al2O3), and hybrid composite were fabricated by stir casting process. The hybrid metal matrix composites were subjected to different mechanical test to determine tensile, hardness and impact tests, and the samples used were machined from the fabricated parent composite in accordance with the ASTM standard. When compared with the base hybrid composite alloy matrix, the tensile strength, hardness, and impact strength of the hybrid composite increased by 24.3 %, 25 % and 0.7 % with the reinforcement addition of ZrO2 by 3% weight and Al2O3 by 2% weight. It has been observedthat, improvement in the impact strength were low, due to highly brittle nature of reinforcement particle, and it resisted the percentage elongation of metal matrix composites (MMCs) and ensured that there is good bonding between matrix and reinforcement particle.