References
[1]. Alm, C. O. (2011, June). Subjective natural language
problems: Motivations, applications, characterizations,
and implications. In Proceedings of the 49th Annual
Meeting of the Association for Computational Linguistics:
Human Language Technologies (pp. 107-112).
[2]. Boguslavsky, I. (2017). Semantic descriptions for a text
understanding system. In Computational Linguistics and
Intellectual Technologies Papers from the Annual
International Conference “Dialogue” (2017) (pp. 14-28).
[3]. Ding, W., Ng, M., & Wei, Y. (2018). Fast computation of
stationary joint probability distribution of sparse Markov
chains. Applied Numerical Mathematics, 125, 68-85.
https://doi.org/10.1016/j.apnum.2017.10.008
[4]. Dos Santos, C., & Gatti, M. (2014, August). Deep
convolutional neural networks for sentiment analysis of short
texts. In Proceedings of COLING 2014, the 25th International
Conference on Computational Linguistics: Technical
Papers (pp. 69-78).
[5]. Duh, K., Fujino, A., & Nagata, M. (2011, June). Is
machine translation ripe for cross-lingual sentiment
classification? In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Human
Language Technologies (pp. 429-433).
[6]. Gokulakrishnan, B., Priyanthan, P., Ragavan, T.,
Prasath, N., & Perera, A. (2012, December). Opinion
mining and sentiment analysis on a Twitter data stream. In
International Conference on Advances in ICT for Emerging
Regions (ICTer2012) (pp. 182-188). IEEE. https://doi.org/
10.1109/ICTer.2012.6423033
[7]. Jiang, L., Yu, M., Zhou, M., Liu, X., & Zhao, T. (2011,
June). Target-dependent Twitter sentiment classification. In
Proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language
Technologies (pp. 151-160).
[8]. Joshi, S., & Deshpande, D. (2018). Twitter sentiment
analysis system. International Journal of Computer
Applications, 180(47), 35-39.
[9]. Kiritchenko, S., Zhu, X., & Mohammad, S. M. (2014).
Sentiment analysis of short informal texts. Journal of Artificial
Intelligence Research, 50, 723-762. https://doi.org/10.16
13/jair.4272
[10]. Kouloumpis, E., Wilson, T., & Moore, J. (2011, July).
Twitter sentiment analysis: The good the bad and the
OMG!. In Fifth International AAAI Conference on Weblogs
and Social Media, 11, 538–541.
[11]. Krishna, K. H., Manikantan, R. T., Kumar, D. c. A., &
Amirthavalli, R. (2020). Detection of hate speech and
offensive language in Twitter using sentiment analysis.
VDGOOD Journal of Computer Science Engineering, 1(2),
351-356.
[12]. Pennington, J., Socher, R., & Manning, C. D. (2014,
October). Glove: Global vectors for word representation. In
Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing (EMNLP) (pp.
1532-1543).
[13]. Poria, S., Cambria, E., & Gelbukh, A. (2015,
September). Deep convolutional neural network textual
features and multiple kernel learning for utterance-level
multimodal sentiment analysis. In Proceedings of the 2015
Conference on Empirical Methods in Natural Language
Processing (pp. 2539-2544).
[14]. Raschka, S., & Mirjalili, V. (2017). Python Machine
Learning: Machine Learning and Deep Learning with
nd Python, scikit-learn, and TensorFlow. (2 Ed.), Packet
Publishing, UK.
[15]. Saif, H., He, Y., & Alani, H. (2012, November).
Semantic sentiment analysis of Twitter. In International
Semantic Web Conference (pp. 508-524). Heidelberg,
Berlin: Springer. https://doi.org/10.1007/978-3-642-35176-
1_32
[16]. Sharma, R. (2020). Twitter Data Sentimental Analysis
Using Multiple Classifications. [Project Report]. School of
Computing Science and Engineering, Galgotias University,
Greater Noida, Uttar Pradesh, India.
[17]. Statista. (2019). Number of monthly active Twitter
users worldwide from 1st quarter 2010 to 1st quarter 2019. Statista Research Department. Retrieved from https://www.
statista.com/statistics/282087/number-ofmonthly-activetwitter-
users/
[18]. TextBlob. (2017). TextBlob: Simplified Text Processing.
TextBlob. Retrieved from https://textblob.readthedocs.io/
en/dev/