A Review on Domestic Power Generation using Hybrid Model

R. Ganapathi*, T. Harinarayana**, Y. Mohamed Shuaib***
*,*** Department of Electrical and Electronics Engineering, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India.
** Centre of Sustainable Development, B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, Tamil Nadu, India.
Periodicity:February - April'2021
DOI : https://doi.org/10.26634/jps.9.1.18236

Abstract

Everyday, newer technologies are being developed in the field of power generation. Engineers are encouraged to find better or alternative solutions to the existing system. The ultimate aim of engineers today is to replace power generation with non-conventional energy harvesting methods as the reserves of fossil fuels like oil, coal will soon be depleted, and they also lead to more pollution. Also, non-conventional energy provides a clean environment to the future generation. In renewable energy, solar energy application has a wider use for high-efficiency energy conversion. Photovoltaic devices absorbs the energy of photons from the sun, and the energy conversion of the solar cell is based on the band gap of the PV materials. A little amount of thermal energy is produced in the solar cell. When there is no sunlight, power generation is affected. With the utilisation of thermal energy for the solar and compensation of power with solar, the hybrid model is a better solution. The use of thermal energy in the production of electricity makes it possible to use the principles of the Seebeck effect. According to Seebeck effect, temperature difference is obtained in two ends of dissimilar metals, on applying a potential difference. The Peltier module follows the principles of the Seebeck effect. This paper analyses the combination of solar and Peltier module and reviews their performance. In addition, this paper would present the challenges and improvements in the field of the solar and Peltier module.

Keywords

Seebeck Effect, Solar and Peltier Module, PVP (Photo Voltaic Peltier) System, Phase Changing Material.

How to Cite this Article?

Ganapathi, R., Harinarayana, T., and Shuaib, Y. M. (2021). A Review on Domestic Power Generation using Hybrid Model. i-manager's Journal on Power Systems Engineering, 9(1), 23-33. https://doi.org/10.26634/jps.9.1.18236

References

[1]. Abhat, A. (1983). Low temperature latent heat thermal energy storage: Heat storage materials. Solar Energy, 30(4), 313-332. https://doi.org/10.1016/0038-092X(83)901 86-X
[2]. Al Tarabsheh, A., Voutetakisb, S., Papadopoulosb, A. I., Seferlisb, P., Etiera, I., & Saraereha, O. (2013). Investigation of temperature effects in efficiency improvement of nonuniformly cooled photovoltaic cells. Chemical Engineering Transactions, 35, 1387-1392. https://doi.org/ 10.3303/CET1335231
[3]. Cuce, E., Bali, T., & Sekucoglu, S. A. (2011). Effects of passive cooling on performance of silicon photovoltaic cells. International Journal of Low-Carbon Technologies, 6(4), 299-308. https://doi.org/10.1093/ijlct/ctr018
[4]. Dalala, Z. M. (2016, April). Energy harvesting using thermoelectric generators. In 2016 IEEE International Energy Conference (ENERGYCON) (pp. 1-6). IEEE. https:// doi.org/10.1109/ENERGYCON.2016.7514088
[5]. Dalala, Z. M., Saadeh, O., Bdour, M., & Zahid, Z. U. (2018). A new maximum power point tracking (MPPT) algorithm for thermoelectric generators with reduced voltage sensors count control. Energies, 11(7). https://doi. org/10.3390/en11071826
[6]. Dalala, Z. M., Zahid, Z. U., Yu, W., Cho, Y., & Lai, J. S. (2013). Design and analysis of an MPPT technique for smallscale wind energy conversion systems. IEEE Transactions on Energy Conversion, 28(3), 756-767. https://doi.org/10.110 9/TEC.2013.2259627
[7]. El-Seesy, I. E., Khalil, T., & Ahmed, M. T. (2012). Experimental investigations and developing of photovoltaic/thermal system. World Applied Sciences Journal, 19(9), 1342-1347. https://doi.org/10.5829/idosi. wasj.2012.19.09.2794
[8]. Gotmare, J. A., Borkar, D. S., & Hatwar, P. R. (2015). Experimental investigation of PV panel with fin cooling under natural convection. International Journal of Advanced Technology in Engineering and Science, 3(2), 447-454.
[9]. Harinarayanan, J., Divya, B. R., & Swathy, V. P. S. D. (2017). Energy harvesting using Peltier cell through cold and heat junctions. International Journal of Engineering Science Invention Research & Development, 3(10).
[10]. Hassan, A., Nouman, H., Assi, A., & Norton, B. (2014, December). Temperature regulation and thermal energy storage potential of phase change materials layer contained at the back of a building integrated photovoltaic panel. In Proceedings of the 30th International PLEA Conference (pp. 16-18).
[11]. Huang, M. J. (2011, November). Two phase change material with different closed shape fins in building integrated photovoltaic system temperature regulation. In World Renewable Energy Congress-Sweden (pp. 2938- 2945). Linköping University Electronic Press. https://doi.org/ 10.3384/ecp110572938
[12]. Ibrahim, A., Othman, M. Y., Ruslan, M. H., Mat, S., & Sopian, K. (2011). Recent advances in flat plate photovoltaic/thermal (PV/T) solar collectors. Renewable and Sustainable Energy Reviews, 15(1), 352-365. https://doi.org/10.1016/j.rser.2010.09.024
[13]. Ilahi, T., & Aslam, M. J. (2016). Energy generation using reverse Peltier effect by Fresnel lens concentration. Retrieved from https://superior.edu.pk/wp-content/ uploads/2017/04/5-2.pdf
[14]. Indartono, Y. S., Suwono, A., & Pratama, F. Y. (2016). Improving photovoltaics performance by using yellow petroleum jelly as phase change material. International Journal of Low-Carbon Technologies, 11(3), 333-337. https://doi.org/10.1093/ijlct/ctu033
[15]. ISE. (2018). Photovoltaics Report. Fraunhofer Institute for Solar Energy Systems. Retrieved form http://cetcsolar energy.com/downloads/Fraunhofer_ISE_Photovoltaics_Re port_2018.pdf
[16]. Jangonda, C., Patil, K., Kinikar, A., Bhokare, R., & Gavali, M. D. (2016). Review of Various Application of Thermoelectric Module. International Journal of Innovative Research in Science, Engineering and Technology, 5(3), 3393-3400.
[17]. John, T. S. (2014). High efficient Seebeck thermoelectric device for power system design and efficiency calculation: A review of potential household appliances. International Journal of Computer Applications, 97(18), 37-42. https://doi.org/10.5120/1710 9-7763
[18]. Joy, B., Philip, J., & Zachariah, R. (2016). Investigations on serpentine tube type solar photovoltaic/thermal collector with different heat transfer fluids: Experiment and numerical analysis. Solar Energy, 140, 12-20. https://doi. org/10.1016/j.solener.2016.10.045
[19]. Karuppaiah, A. C., Ganesh, S., Dileepan, T., & Jayabharathi, S. (2014). Fabrication and analysis of thermo electric generator for power generator. International Journal of Innovative Research in Science, Engineering and Technology, 3(1), 1508-1513.
[20]. Kaphungkui, N. K., Phukan, A., Sharma, M., Gogoi, A., & Subhani, M. (2016). Highly efficient electricity generation with Peltier module. International Journal of Engineering Trends and Technology, 35(10), 500-503. https://doi.org/ 10.14445/22315381/ijett-v35p300
[21]. Kim, J., Shim, M., Jung, J., Kim, H., & Kim, C. (2014, January). A DC-DC boost converter with variation tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications. In 2014, 19th Asia and South Pacific Design Automation Conference (ASP-DAC) (pp. 35-36). IEEE. https://doi.org/10.1109/ASPDAC.2014.67 42861
[22]. Kiziroglou, M. E., Wright, S. W., Toh, T. T., Mitcheson, P. D., Becker, T., & Yeatman, E. M. (2013). Design and fabrication of heat storage thermoelectric harvesting devices. IEEE Transactions on Industrial Electronics, 61(1), 302-309. https://doi.org/10.1109/TIE.2013.2257140
[23]. Lineykin, S., & Ben-Yaakov, S. (2007). Modeling and analysis of thermoelectric modules. IEEE Transactions on Industry Applications, 43(2), 505-512. https://doi.org/10.11 09/TIA.2006.889813
[24]. Liu, C., Chen, P., & Li, K. (2014, February). A 1 kW thermoelectric generator for low-temperature geothermal resources. In Proceedings of the Thirty-Ninth Workshop on Geothermal Reservoir Engineering (pp. 24-26).
[25]. Min, G., & Rowe, D. M. (2002a). “Symbiotic” application of thermoelectric conversion for fluid preheating/power generation. Energy Conversion and Management, 43(2), 221-228. https://doi.org/10.1016/ S0196- 8904(01)00024-3
[26]. Min, G., & Rowe, D. M. (2002b, August). Recent concepts in thermoelectric power generation. In Twenty- First International Conference on Thermoelectrics, 2002 Proceedings ICT'02 (pp. 365-374). IEEE. https://doi.org/10.1 109/ICT.2002.1190341
[27]. Mohsenzadeh, M., & Shafii, M. B. (2017). A novel concentrating photovoltaic/thermal solar system combined with thermoelectric module in an integrated design. Renewable Energy, 113, 822-834. https://doi.org/ 10.1016/j.renene.2017.06.047
[28]. Nesarajah, M., & Frey, G. (2016, October). Thermoelectric power generation: Peltier element versus nd thermoelectric generator. In IECON 2016-42nd Annual Conference of the IEEE Industrial Electronics Society (pp. 4252-4257). IEEE. https://doi.org/10.1109/IECON.2016.779 3029
[29]. O'Halloran, S. O., & Rodrigues, M. (2012). Power and efficiency measurement in a thermoelectric generator. In Proceedings of 2012 ASEE Annual Conference & Exposition. https://doi.org/10.18260/1-2--21806
[30]. Ota, T., Tokunaga, C., & Fujita, K. (2005, June). Development of thermoelectric power generation system for industrial furnaces. In ICT 2005 24th International Conference on Thermoelectrics, 2005. (pp. 335-338). IEEE. https://doi.org/10.1109/ICT.2006.331253
[31]. Pasupathy, A., Velraj, R., & Seeniraj, R. V. (2008). Phase change material-based building architecture for thermal management in residential and commercial establishments. Renewable and Sustainable Energy Reviews, 12(1), 39-64. https://doi.org/10.1016/j.rser.2006.05.010
[32]. Prashantha, K., & Wango, S. (2016). Smart power generation from waste heat by thermoelectric generator. International Journal of Mechanical and Production Engineering, 45-49.
[33]. Raghavendra, & Biradar, M. (2016). Hybrid power generation system using solar and Peltier plate. International Journal of Innovative Science, Engineering & Technology, 3(12), 126-130.
[34]. Rehman, S., Bader, M. A., & Al-Moallem, S. A. (2007). Cost of solar energy generated using PV panels. Renewable and Sustainable Energy Reviews, 11(8), 1843- 1857. https://doi.org/10.1016/j.rser.2006.03.005
[35]. Stritih, U. (2016). Increasing the efficiency of PV panel with the use of PCM. Renewable Energy, 97, 671-679. https://doi.org/10.1016/j.renene.2016.06.011
[36]. Teo, H. G., Lee, P. S., & Hawlader, M. N. A. (2012). An active cooling system for photovoltaic modules. Applied Energy, 90(1), 309-315. https://doi.org/10.1016/j.apen ergy.2011.01.017
[37]. van Sark, W. G. J. H. M. (2011). Feasibility of photovoltaic–thermoelectric hybrid modules. Applied Energy, 88(8), 2785-2790. https://doi.org/10.1016/j.apener gy.2011.02.008
[38]. Xie, W., Huang, G., Zhang, X., & Deng, F. (2017, July). A maximum power point tracking controller for thermoelectric generators. In 2017, 36th Chinese Control Conference (CCC) (pp. 9079-9084). IEEE. https://doi.org/ 10.23919/ChiCC.2017.8028802
[39]. Zhang, X., Zhao, X., Smith, S., Xu, J., & Yu, X. (2012). Review of R & D progress and practical application of the solar photovoltaic/thermal (PV/T) technologies. Renewable and Sustainable Energy Reviews, 16(1), 599-617. https://doi.org/10.1016/j.rser.2011.08.026
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.