References
[1]. Chaudhry, H., Rahim, M. S. M., Saba, T., & Rehman, A.
(2018). Crowd region detection in outdoor scenes using
color spaces. International Journal of Modeling, Simulation, and Scientific Computing, 9(2), 1850012.
https://doi.org/10.1142/S1793962318500125
[2]. Chebi, H., Tabet-Derraz, H., Sayah, R., Benaissa, A.,
Meroufel, A., Acheli, D., & Meraihi, Y. (2020). Intelligence
and adaptive global algorithm detection of crowd
behavior. International Journal of Computer Vision and
Image Processing (IJCVIP), 10(1), 24-41. https://doi.org/
10.4018/IJCVIP.2020010102
[3]. Khan, K., Albattah, W., Khan, R. U., Qamar, A. M., &
Nayab, D. (2020). Advances and trends in real time visual
crowd analysis. Sensors, 20(18), 5073. https://doi.org/10.
3390/s20185073
[4]. Shalash, W. M., AlZahrani, A. A., & Al-Nufaii, S. H. (2019,
nd May). Crowd Detection Management System. In 2019, 2
International Conference on Computer Applications &
Information Security (ICCAIS) (pp. 1-8). IEEE. ttps://doi.org/
10.1109/CAIS.2019.8769566
[5]. Sikdar, A., & Chowdhury, A. S. (2020). Scale-invariant
batch-adaptive residual learning for person reidentification.
Pattern Recognition Letters, 129, 279-286.
https://doi.org/10.1016/j.patrec.2019.11.032
[6]. Tzelepi, M., & Tefas, A. (2017, August). Human crowd
detection for drone flight safety using convolutional neural
networks. In 2017, 25th European Signal Processing
Conference (EUSIPCO) (pp. 743-747). IEEE. https://doi.org/
10.23919/EUSIPCO.2017.8081306