References
[1]. Al-Fayyadh, H. Q., AlSabbagh, H. M., & Al-Rizzo, H. (2017). Design a flexible antenna integrated with artificial magnetic conductor. Advanced Computational Techniques in Electromagnetics, 2017, 1-15. https://doi.org/10.5899/ 2017/ACTE-0021
[2]. Bhattacharyya, S., Das, N., Bhattacharjee, D., & Mukherjee, A. (Eds.). (2016). Handbook of Research on Recent Developments in Intelligent Communication Application. IGI Global.
[3]. Chan, M., Estève, D., Fourniols, J. Y., Escriba, C., & Campo, E. (2012). Smart wearable systems: Current status and future challenges. Artificial Intelligence in Medicine, 56(3), 137-156. https://doi.org/10.1016/j.artmed.2012.09. 003
[4]. El Gharbi, M., Martinez-Estrada, M., Fernández- García, R., Ahyoud, S., & Gil, I. (2020). A novel ultra-wide band wearable antenna under different bending conditions for electronic-textile applications. The Journal of The Textile Institute, 112(3), 437-443. https://doi.org/10.108 0/00405000.2020.1762326
[5]. Jianying, L., Fang, D., Yichen, Z., Xin, Y., Lulu, C., Panpan, Z., & Mengjun, W. (2016, May). Bending effects on a flexible Yagi-Uda antenna for wireless body area network. In 2016, Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC) (Vol. 1, pp. 1001- 1003). IEEE. https://doi.org/10.1109/APEMC.2016.7522928
[6]. Khaleel, H. R. (2012). Novel metamaterial based antennas for flexible wireless systems. [Doctoral Dissertation]. University of Arkansas at Little Rock, Little Rock, AR.
[7]. Li, M., Luk, K. M., Ge, L., & Zhang, K. (2016). Miniaturization of magnetoelectric dipole antenna by using metamaterial loading. IEEE Transactions on Antennas and Propagation, 64(11), 4914-4918. https://doi.org/ 10.1109/TAP.2016.2599176
[8]. Li, Y., Li, W., & Mittra, R. (2014). Miniaturized CPW-FED UWB antenna with dual frequency rejection bands using stepped impedance stub and arc shaped parasitic element. Microwave and Optical Technology Letters, 56(4), 783-787. https://doi.org/10.1002/mop.28228
[9]. Li, Y., Li, W., & Ye, Q. (2013). A reconfigurable triplenotch- band antenna integrated with defected microstrip structure band-stop filter for ultra-wideband cognitive radio applications. International Journal of Antennas and Propagation. https://doi.org/10.1155/2013/472645
[10]. Li, Y., Zhang, W., & Yu, W. (2015). A circular slot UWB antenna with independently tunable quad-band filtering characteristics. Applied Computational Electromagnetics Society Journal, 30(10), 1089-1095.
[11]. Mohamadzade, B., Hashmi, R. M., Simorangkir, R. B., Gharaei, R., Ur Rehman, S., & Abbasi, Q. H. (2019). Recent advances in fabrication methods for flexible antennas in wearable devices: State of the art. Sensors, 19(10), 2312. https://doi.org/10.3390/s19102312
[12]. Mohandoss, S., Palaniswamy, S. K., Thipparaju, R. R., Kanagasabai, M., Naga, B. R. B., & Kumar, S. (2019). On the bending and time domain analysis of compact wideband flexible monopole antennas. AEU-International Journal of Electronics and Communications, 101, 168- 181. https://doi.org/10.1016/j.aeue.2019.01.015
[13]. Osman, M. A., Rahim, M. K. A., Samsuri, N. A., Elbasheer, M. K., & Ali, M. E. (2012). Textile UWB antenna bending and wet performances. International Journal of Antennas and Propagation. https://doi.org/10.1155/2012/ 251682
[14]. Survase, S. C., & Deshmukh, V. V. (2013). Design of wearable antenna for telemedicine application. International Journal of Engineering Science and Innovative Technology (IJESIT), 2(2), 574-580.
[15]. Vallozzi, L., Boeykens, F., & Rogier, H. (2015, April). Cylindrically-bent rectangular patch antennas: novel modeling techniques for resonance frequency variation and uncertainty. In 2015, 9th European Conference on Antennas and Propagation (EuCAP) (pp. 1-5). IEEE.
[16]. Xiong, H., Hong, J. S., & Peng, Y. H. (2012). Impedance bandwidth and gain improvement for microstrip antenna using metamaterials. Radioengineering, 21(4), 993-998.