References
[1]. Ameera, N., Shuhaimi, A., Surani, N., Rusop, M., Hakim, M., Mamat, M. H., ... Yusuf, Y. (2015). Nanocolumnar zinc oxide as a transparent conductive oxide film for a blue InGaN-based light emitting diode. Ceramics International, 41(1), 913-920. https://doi.org/10.1016/j.ceramint.2014. 09.009
[2]. Ammar, S., Helfen, A., Jouini, N., Fievet, F., Rosenman, I., Villain, F., ... Danot, M. (2001). Magnetic properties of ultrafine cobalt ferrite particles synthesized by hydrolysis in a polyol medium basis. Journal of Materials Chemistry, 11(1), 186-192.
[3]. Atribak, I., Bueno-López, A., & García-García, A. (2009). Role of yttrium loading in the physico-chemical properties and soot combustion activity of ceria and ceria–zirconia catalysts. Journal of Molecular Catalysis A: Chemical, 300(1-2), 103-110. https://doi.org/10.1016/j. molcata.2008.10.043
[4]. Cho, J. M., Song, J. K., & Park, S. M. (2009). Characterization of ZnO nanoparticles grown by laser ablation of a Zn target in neat water. Bulletin of the Korean Chemical Society, 30(7), 1616-1618. https://doi.org/10. 5012/bkcs.2009.30.7.1616
[5]. Djurišić, A. B., Choy, W. C., Roy, V. A. L., Leung, Y. H., Kwong, C. Y., Cheah, K. W., ..., & Surya, C. (2004). Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structures. Advanced Functional Materials, 14(9), 856-864. https://doi.org/10.1002/adfm.200305082
[6]. Eskandari, M., Ahmadi, V., & Ghahary, R. (2015). Copper sulfide/lead sulfide as a highly catalytic counter electrode for zinc oxide nanorod based quantum dot solar cells. Electrochimica Acta, 151, 393-398. https://doi.org/ 10.1016/j.electacta.2014.11.037
[7]. Ghanem, A. F., Badawy, A. A., Mohram, M. E., & Rehim, M. H. A. (2020). Synergistic effect of zinc oxide nanorods on the photocatalytic performance and the biological activity of graphene nano sheets. Heliyon, 6(2). https://doi.org/10. 1016/j.heliyon.2020.e03283
[8]. Ghosh, A., Kumari, N., Tewari, S., & Bhattacharjee, A. (2013). Structural and optical properties of pure and Al doped ZnO nanocrystals. Indian Journal of Physics, 87(11), 1099-1104. https://doi.org/10.1007/s12648-013-0346-9
[9]. Hosseini, Z. S., & Mortezaali, A. (2015). Room temperature H S gas sensor based on rather aligned ZnO2 nanorods with flower-like structures. Sensors and Actuators B: Chemical, 207, 865-871. https://doi.org/10.1016/j.snb. 2014.10.085
[10]. Janisch, R., Gopal, P., & Spaldin, N. A. (2005). Transition metal-doped TiO and ZnO-present status of the 2 field. Journal of Physics: Condensed Matter, 17(27). https:// doi.org/10.1088/0953-8984/17/27/R01
[11]. Jia, T., Wang, W., Long, F., Fu, Z., Wang, H., & Zhang, Q. (2009). Fabrication, characterization and photocatalytic activity of La-doped ZnO nanowires. Journal of Alloys and Compounds, 484(1-2), 410-415. https://doi.org/10.1016/j. jallcom.2009.04.153
[12]. Martens, M., Schlegel, J., Vogt, P., Brunner, F., Lossy, R., Würfl, J., ..., & Kneissl, M. (2011). High gain ultraviolet photodetectors based on AlGaN/GaN heterostructures for optical switching. Applied Physics Letters, 98(21), 1-3. https://doi.org/10.1063/1.3595303
[13]. Mozaffari, M., Manouchehri, S., Yousefi, M. H., & Amighian, J. (2010). The effect of solution temperature on crystallite size and magnetic properties of Zn substituted Co ferrite nanoparticles. Journal of Magnetism and Magnetic Materials, 322(4), 383-388. https://doi.org/10.1016/j. jmmm.2009.09.051
[14]. Nagasundari, S. M., Muthu, K., Kaviyarasu, K., Al Farraj, D. A., & Alkufeidy, R. M. (2021). Current trends of Silver doped Zinc oxide nanowires photocatalytic degradation for energy and environmental application. Surfaces and Interfaces. https://doi.org/10.1016/j.surfin. 2021.100931
[15]. Pradeep, T. (2012). A Textbook of Nanoscience and Nanotechnology. Tata McGraw Hill Education.
[16]. Song, J. L., Zheng, J. H., Zhen, Z. H. A. O., Zhou, B. Y., & Lian, J. S. (2013). Synthesis and photoluminescence of Y and Cd co-doped ZnO nanopowder. Transactions of Nonferrous Metals Society of China, 23(8), 2336-2340. https://doi.org/10.1016/S1003-6326(13)62738-7
[17]. Song, J., Kulinich, S. A., Li, J., Liu, Y., & Zeng, H. (2015). A general one-pot strategy for the synthesis of highperformance transparent-conducting-oxide nanocrystal inks for all-solution-processed devices. Angewandte Chemie, 127(2), 472-476. https://doi.org/10.1002/ange. 201408621
[18]. Temperley, H. N. V., Rawlinson, J. S., & Rush brooke, G. S. (1968). Physics of Simple Liquids. NY: John Wiley.
[19]. Tien, L. C., Sadik, P. W., Norton, D. P., Voss, L. F., Pearton, S. J., Wang, H. T., ..., & Lin, J. (2005). Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Applied Physics Letters, 87(22), 222106.
[20]. Triboulet, R., & Perriere, J. (2003). Epitaxial growth of ZnO films. Progress in Crystal Growth and Characterization of Materials, 47(2-3), 65-138. https://doi.org/10.1016/j. pcrysgrow.2005.01.003
[21]. Verma, R., Chauhan, A., Shandilya, M., Li, X., Kumar, R., & Kulshrestha, S. (2020). Antimicrobial potential of Agdoped ZnO nanostructure synthesized by the green method using Moringa oleifera extract. Journal of Environmental Chemical Engineering, 8(3). https://doi.org/ 10.1016/j.jece.2020.103730
[22]. Yıldırım, Ö. A., Unalan, H. E., & Durucan, C. (2013). Highly efficient room temperature synthesis of silver-doped zinc oxide (ZnO:Ag) nanoparticles: structural, optical, and photocatalytic properties. Journal of the American Ceramic Society, 96(3), 766-773. https://doi.org/10.1111/ jace.12218
[23]. Yu, S. F., Yuen, C., Lau, S. P., Wang, Y. G., Lee, H. W., & Tay, B. K. (2003). Ultraviolet amplified spontaneous emission from zinc oxide ridge waveguides on silicon substrate. Applied Physics Letters, 83(21), 4288-4290. https://doi.org/10.1063/1.1629784