References
[1]. Baruah, S., & Dutta, J. (2009). Hydrothermal growth of ZnO nanostructures. Science and Technology of Advanced Materials, 10(1), 1-8. https://doi.org/10.1088/1468-996/10/ 1/013001
[2]. Bhat, D. (2008). Facile synthesis of ZnO nanorods by microwave irradiation of zinc–hydrazine hydrate complex. Nanoscale Research Letters, 3(1), 31-35. https://doi.org/ 10.1007/s11671-007-9110-4
[3]. Du, J., Xu, L., Zou, G., Chai, L., & Qian, Y. (2006). Solvothermal synthesis of single crystalline ZnTe nanorod bundles in a mixed solvent of ethylenediamine and hydrazine hydrate. Journal of Crystal Growth, 291(1), 183- 186. https://doi.org/10.1016/j.jcrysgro.2006.02.040
[4]. Faisal, M., Ismail, A. A., Ibrahim, A. A., Bouzid, H., & Al- Sayari, S. A. (2013). Highly efficient photocatalyst based on Ce doped ZnO nanorods: Controllable synthesis and enhanced photocatalytic activity. Chemical Engineering Journal, 229, 225-233. https://doi.org/10.1016/j.cej.2013. 06.004
[5]. Faisal, M., Tariq, M. A., & Muneer, M. (2007). Photocatalysed degradation of two selected dyes in UVirradiated aqueous suspensions of titania. Dyes and Pigments, 72(2), 233-239. https://doi.org/10.1016/j. dyepig.2005.08.020
[6]. Gouvea, C. A., Wypych, F., Moraes, S. G., Duran, N., Nagata, N., & Peralta-Zamora, P. (2000). Semiconductorassisted photocatalytic degradation of reactive dyes in aqueous solution. Chemosphere, 40(4), 433-440. https:// doi.org/10.1016/S0045-6535(99)00313-6
[7]. Ismail, A. A., El-Midany, A. A., Abel-Aal, E. A., and El- Shall, H. (2005). Application of statistical design strategies to optimize the preparation of ZnO nanoparticles via hydrothermal technique. Materials Letters, 59, 1924- 1928.
[8]. Lin, Y. F., Chen, J. L., Chang, K. S., & Tung, K. L. (2013). Insight into the roles of ethylenediamine and hydrazine for the synthesis of ZnO micro/nanostructures using solvothermal process. Journal of Nanoparticle Research, 15(1), 1-8. https://doi.org/10.1007/s11051-012-1398-z
[9]. Lincot, D. (2010). Solution growth of functional zinc oxide films and nanostructures. MRS Bulletin, 35(10), 778- 789. https://doi.org/10.1557/mrs2010.507
[10]. Madathil, A. N. P., Vanaja, K. A., & Jayaraj, M. K. (2007, September). Synthesis of ZnO nanoparticles by hydrothermal method. In Nanophotonic Materials IV (Vol. 6639, p. 66390J). International Society for Optics and Photonics. https://doi.org/10.1117/12.730364
[11]. Omidi, A., & Habibi-Yangjeh, A. (2014). Enhancing photocatalytic activity of ZnO nanostructures by doping +4 with Ce ions prepared in water using ultrasonic irradiation. International Journal of Materials Research, 105(3), 288- 295. https://doi.org/10.3139/146.111015
[12]. Ozdemir, O., Armagan, B., Turan, M., & Celik, M. S. (2004). Comparison of the adsorption characteristics of azo-reactive dyes on mezoporous minerals. Dyes and Pigments, 62(1), 49-60. https://doi.org/10.1016/j.dyepig. 2003.11.007
[13]. Sahoo, G. P., Samanta, S., Bhui, D. K., Pyne, S., Maity, A., & Misra, A. (2015). Hydrothermal synthesis of hexagonal ZnO microstructures in HPMC polymer matrix and their catalytic activities. Journal of Molecular Liquids, 212, 665- 670. https://doi.org/10.1016/j.molliq.2015.10.019
[14]. Srinivasan, N., Anbuchezhiyan, M., Harish, S., & Ponnusamy, S. (2019). Hydrothermal synthesis of C doped ZnO nanoparticles coupled with BiVO and their 4 photocatalytic performance under the visible light irradiation. Applied Surface Science, 494, 771-782. https://doi.org/10.1016/j.apsusc.2019.07.093
[15]. Zhou, W. D., Wu, X., Zhang, Y. C., & Zhang, M. (2007). Solvothermal synthesis of hexagonal ZnO nanorods and their photoluminescence properties. Materials Letters, 61(10), 2054-2057. https://doi.org/10.1016/j.matlet. 2006. 08.014