References
[1]. Almogren, A. S. (2020). Intrusion detection in Edge-of- Things computing. Journal of Parallel and Distributed Computing, 137, 259-265. https://doi.org/10.1016/j.jpdc. 2019.12.008
[2]. Dubey, G. P., Gupta, N., & Bhujade, R. K. (2011). A novel approach to intrusion detection system using rough set theory and incremental SVM. International Journal of Soft Computing and Engineering (IJSCE), 1(1), 1448
[3]. Iguer, H., Medromi, H., Sayouti, A., Elhasnaoui, S., & Faris, S. (2014, August). The impact of cyber security issues on businesses and governments: A system for implementing a cyber security plan. In 2014, International Conference on Future Internet of Things and Cloud, (pp. 316-321). IEEE. https://doi.org/10.1109/FiCloud.2014.56
[4]. Kasongo, S. M., & Sun, Y. (2021). A deep gated recurrent unit based model for wireless intrusion detection system. ICT Express, 7(1), 81-87. https://doi.org/10.1016/ j.icte.2020.03.002
[5]. Kushwaha, P., Buckchash, H., & Raman, B. (2017, November). Anomaly based intrusion detection using filter based feature selection on KDD-CUP 99. In TENCON 2017- 2017 IEEE Region 10 Conference, (pp. 839-844). IEEE. https://doi.org/10.1109/TENCON.2017.8227975
[6]. Pervez, M. S., & Farid, D. M. (2014, December). Feature selection and intrusion classification in NSL-KDD cup 99 th dataset employing SVMs. In The 8 International Conference on Software, Knowledge, Information Management and Applications (SKIMA 2014), (pp. 1-6). IEEE. https://doi.org/10.1109/SKIMA.2014.7083539
[7]. Prabhu, G. N., Jain, K., Lawande, N., Kumar, N., Zutshi, Y., Singh, R., & Chinchole, J. (2014). Network intrusion detection system. International Journal of Engineering Research and Applications, 4(4), 69-72.
[8]. Shaout, A., Kaja, N., & Borovikov, M. (2014). Security solution for cloud computing using a hardware implementation of AES. In The International Arab Conference on Information Technology (ACIT-2014).
[9]. Shaout, A., Kaja, N., & Awad, S. (2015, December). A smart traffic sign recognition system. In 2015, 11th International Computer Engineering Conference (ICENCO), (pp. 157-162). IEEE. https://doi.org/10.1109/ ICENCO. 2015.7416341
[10]. Subba, B., Biswas, S., & Karmakar, S. (2016, March). A neural network based system for intrusion detection and attack classification. In 2016, Twenty Second National Conference on Communication (NCC), (pp. 1-6). IEEE. https://doi.org/10.1109/NCC.2016.7561088
[11]. Zhang, J., Ling, Y., Fu, X., Yang, X., Xiong, G., & Zhang, R. (2020). Model of the intrusion detection system based on the integration of spatial-temporal features. Computers & Security, 89, 1-12. https://doi.org/10.1016/j.cose.2019. 101681
[12]. Zhang, L., Shi, L., Kaja, N., & Ma, D. (2018, August). A two-stage deep learning approach for can intrusion detection. In Proceedings of Ground Vehicle Systems Engineering and Technology Symposium (GVSETS), (pp. 1-11).