References
[1]. Alioua, N., Amine, A., & Rziza, M. (2014, August). Driver's fatigue detection based on yawning extraction. International Journal of Vehicular Technology, 2014, Article ID: 678786. https://doi.org/10.1155/2014/678786
[2]. Chieh, T. C., Mustafa, M. M., Hussain, A., Hendi, S. F., & Majlis, B. Y. (2005, November). Development of vehicle driver drowsiness detection system using electrooculogram (EOG). In 2005, 1st International Conference on Computers, Communications, & Signal Processing with Special Track on Biomedical Engineering (pp. 165-168). IEEE. https://doi. org/10.1109/CCSP.2005.4977181
[3]. Gander, P. H., Nguyen, D. E., Rosekind, M. R., & Connell, L. J. (1993). Age, circadian rhythms, and sleep loss in flight crews. Aviation, Space, and Environmental Medicine. 64(3), 189-195.
[4]. Hartley, L., Horberry, T., Mabbott, N., & Krueger, G. P. (2000). Review of fatigue detection and prediction technologies. [Report], National Road Transport Commission, Australia. 1-41.
[5]. Kaplan, S., Guvensan, M. A., Yavuz, A. G., & Karalurt, Y. (2015). Driver behavior analysis for safe driving: A survey. IEEE Transactions on Intelligent Transportation Systems, 16(6), 3017-3032. https://doi.org/10.1109/TITS.2015.24620 84
[6]. Parande, G.D., Khade P.M., Kolpe, S.B., & Gavande, U.R. (2017). Intelligent braking system by using microcontroller and sensor, International Journal of Advance Research in Engineering, Science & Technology, 4(3), 489-493.
[7]. Ram, J., & Kumar, B. (2017). Automatic braking system using ultrasonic sensor. International Journal of Innovative Science and Research Technology, 2(4), 2456 – 2165
[8]. Triyanti, V., & Iridiastadi, H. (2017, December). Challenges in detecting drowsiness based on driver's behavior. In IOP Conference Series: Materials Science and Engineering (Vol. 277, No. 1, p. 012042). IOP Publishing. https://doi.org/10.1088/1757-899X/277/1/012042
[9]. Vargas-Cuentas, N. I., & Roman-Gonzalez, A. (2017, August). Facial image processing for sleepiness estimation. In 2017, 2nd International Conference on Bioengineering for Smart Technologies (BioSMART) (pp. 1-3). IEEE.
[10]. Wang, T., & Shi, P. (2005, May). Yawning detection for determining driver drowsiness. In Proceedings of 2005 IEEE International Workshop on VLSI Design and Video Technology (pp. 373-376). IEEE. https://doi.org/10.1109/ IWVDVT.2005.1504628
[11]. Yang, S., Xi, J., & Wang, W. (2019, September). Driver drowsiness detection through a vehicle's active probe action. In 2019, IEEE 2nd Connected and Automated Vehicles Symposium (CAVS) (pp. 1-7). IEEE. https://doi.org/ 10.1109/CAVS.2019.8887773
[12]. Yauri-Machaca, M., Meneses-Claudio, B., Vargas- Cuentas, N., & Roman-Gonzalez, A. (2018, November). Design of a vehicle driver drowsiness detection system through image processing using Matlab. In 2018, IEEE 38th Central America and Panama Convention (CONCAPAN XXXVIII) (pp. 1-6). IEEE. https://doi.org/10.1109/CONCAPAN. 2018.8596513