References
[1]. Alam, M. N., Sarma, D., Lima, F. F., Saha, I., & Hossain, S.
(2020, August). Phishing Attacks Detection using Machine
Learning Approach. In 2020, Third International
Conference on Smart Systems and Inventive Technology
(ICSSIT) (pp. 1173-1179). IEEE. https://doi.org/10.1109/ICS
SIT48917.2020.9214225
[2]. Arivukarasi, M., & Antonidoss, A. (2021). DeepPhish:
Automated Phishing Detection Using Recurrent Neural
Network. In Advances in Smart System Technologies (pp.
233-242). Springer, Singapore. https://doi.org/10.1007/978-
981-15-5029-4_18
[3]. Bozkir, A. S., & Aydos, M. (2020). LogoSENSE: A companion HOG based logo detection scheme for
phishing web page and E-mail brand recognition.
Computers & Security, 95, 101855. https://doi.org/10.1016/
j.cose.2020.101855
[4]. Dhamija, R., Tygar, J. D., & Hearst, M. (2006, April). Why
phishing works. In Proceedings of the SIGCHI conference
on Human Factors in computing systems (pp. 581-590).
https://doi.org/10.1145/1124772.1124861
[5]. Garera, S., Provos, N., Chew, M., & Rubin, A. D. (2007,
November). A framework for detection and measurement
of phishing attacks. In Proceedings of the 2007 ACM
workshop on Recurring Malcode (pp. 1-8). https://doi.org/
10.1145/1314389.1314391
[6]. Hossain, S., Abtahee, A., Kashem, I., Hoque, M. M., &
Sarker, I. H. (2020, March). Crime prediction using spatiotemporal
data. In International Conference on Computing
Science, Communication and Security (pp. 277-289).
Springer, Singapore. https://doi.org/10.1007/978-981-15-6
648-6_22
[7]. Ma, J., Saul, L. K., Savage, S., & Voelker, G. M. (2009,
June). Beyond blacklists: Learning to detect malicious web
sites from suspicious URLs. In Proceedings of the 15th ACM
SIGKDD International Conference on Knowledge Discovery
and Data Mining (pp. 1245-1254).
[8]. Singh, S., Singh, M. P., & Pandey, R. (2020, October).
Phishing Detection from URLs Using Deep Learning Approach.
In 2020, 5th International Conference on Computing,
Communication and Security (ICCCS) (pp. 1-4). IEEE. https://
doi.org/10.1109/ICCCS49678.2020.9277459
[9]. Tuan, T. A., Long, H. V., Son, L. H., Kumar, R.,
Priyadarshini, I., & Son, N. T. K. (2020). Performance
evaluation of Botnet DDoS attack detection using machine
learning. Evolutionary Intelligence, 13(2), 283-294. https://
doi.org/10.1007/s12065-019-00310-w
[10]. Yadollahi, M. M., Shoeleh, F., Serkani, E., Madani, A.,
& Gharaee, H. (2019, April). An adaptive machine learning
based approach for phishing detection using hybrid
features. In 2019, 5th International Conference on Web
Research (ICWR) (pp. 281-286). IEEE. https://doi.org/10.11
09/ICWR.2019.8765265