References
[1]. Bogo, F., Kanazawa, A., Lassner, C., Gehler, P., Romero, J., & Black, M. J. (2016, October). Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image. In European Conference on Computer Vision (pp. 561-578). Cham: Springer. https://doi.org/10.1007/978-3-3 19-46454-1_34
[2]. Bourdev, L., & Malik, J. (2009, September). Poselets: Body part detectors trained using 3D human pose annotations. In 2009, IEEE 12th International Conference on Computer Vision (pp. 1365-1372). IEEE. https://doi.org/ 10.1109/ICCV.2009.5459303
[3]. Buchanan, A., & Fitzgibbon, A. (2006, June). Interactive feature tracking using kd trees and dynamic programming. In 2006, IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06) (Vol. 1, pp. 626-633). IEEE. https://doi.org/10. 1109/CVPR.2006.158
[4]. Cao, Z., Simon, T., Wei, S. E., & Sheikh, Y. (2017). Realtime multi-person 2D pose estimation using part affinity fields. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 7291-7299).
[5]. Duffner, S., & Garcia, C. (2013). PixelTrack: A fast adaptive algorithm for tracking non-rigid objects. In Proceedings of the IEEE International Conference on Computer Vision (pp. 2480-2487). https://doi.org/10.1109/ ICCV.2013.308
[6]. Han, S. H., Kim, H. G., & Choi, H. J. (2017, February). Rehabilitation posture correction using deep neural network. In 2017, IEEE International Conference on Big Data and Smart Computing (BigComp) (pp. 400-402). IEEE. https://doi.org/10.1109/BIGCOMP.2017.7881743
[7]. Kyaagba, S. (2018, September 7). Dynamic Time Warping with Time Series. Medium. Retrieved from https:// medium.com/@shachiakyaagba_41915/dynamic-timewarping- with-time-series-1f5c05fb8950
[8]. Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D., ... & Zitnick, C. L. (2014, September). Microsoft COCO: Common objects in context. In European Conference on Computer Vision (pp. 740-755). Cham: Springer. https://doi.org/10.1007/978-3-319-10602-1_48
[9]. Müller, M. (2007). Dynamic time warping. In Information Retrieval for Music and Motion, (pp.69-84). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3- 540-74048-3_4
[10]. Nadeem, A., Jalal, A., & Kim, K. (2020, February). Human actions tracking and recognition based on body parts detection via Artificial neural network. In 2020, 3rd International Conference on Advancements in Computational Sciences (ICACS) (pp. 1-6). IEEE. https://doi.org/10.1109/ ICACS47775.2020.9055951
[11]. Nagarkoti, A., Teotia, R., Mahale, A. K., & Das, P. K. (2019, July). Realtime indoor workout analysis using machine learning & computer vision. In 2019, 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1440-1443). IEEE. https://doi.org/10.1109/EMBC.2019.8856547
[12]. Parley Labs (2020, January 6). Exploration: Pose Estimation with OpenPose and PoseNet — Parley Labs. Medium. Retrieved from https://parleylabs.medium.com/ exploration-pose-estimation-with-openpose-and-pose net-parley-labs-d7f21b541774
[13]. Toshev, A., & Szegedy, C. (2014). DeepPose: Human pose estimation via deep neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 1653-1660). https://doi.org/10.1109/ CVPR.2014.214
[14]. Zou, J., Li, B., Wang, L., Li, Y., Li, X., Lei, R., & Sun, S. (2018, November). Intelligent fitness trainer system based on human pose estimation. In International Conference on Signal and Information Processing, Networking and Computers (pp. 593-599). Springer, Singapore. https://doi. org/10.1007/978-981-13-7123-3_69