References
[1]. Abdulhay, E., Arunkumar, N., Narasimhan, K.,
Vellaiappan, E., & Venkatraman, V. (2018). Gait and
tremor investigation using machine learning techniques for
the diagnosis of Parkinson disease. Future Generation
Computer Systems, 83, 366-373. https://doi.org/10.1016/j.
future.2018.02.009
[2]. Abiyev, R. H., & Abizade, S. (2016). Diagnosing
Parkinson's diseases using fuzzy neural system.
Computational and Mathematical Methods in Medicine.
2016, Article ID 1267919. https://doi.org/10.1155/2016/
1267919
[3]. Choi, H., Ha, S., Im, H. J., Paek, S. H., & Lee, D. S. (2017).
Refining diagnosis of Parkinson's disease with deep
learning-based interpretation of dopamine transporter
imaging. Neuro Image: Clinical, 16, 586-594. https://doi.
org/10.1016/j.nicl.2017.09.010
[4]. El Moudden, I., Ouzir, M., & ElBernoussi, S. (2017,
February). Automatic speech analysis in patients with
Parkinson's disease using feature dimension reduction. In
Proceedings of the 3rd International Conference on
Mechatronics and Robotics Engineering (pp. 167-171).
https://doi.org/10.1145/3068796.3068813
[5]. Oh, S. L., Hagiwara, Y., Raghavendra, U., Yuvaraj, R.,
Arunkumar, N., Murugappan, M., & Acharya, U. R. (2020).
A deep learning approach for Parkinson's disease
diagnosis from EEG signals. Neural Computing and
Applications, 32(15), 10927-10933. https://doi.org/10.100
7/s00521-018-3689-5
[6]. Sahyoun, A., Chehab, K., Al-Madani, O., Aloul, F., & Sagahyroon, A. (2016, September). ParkNosis: Diagnosing Parkinson's disease using mobile phones. In 2016, IEEE 18
International Conference on e-Health Networking,
Applications and Services (Healthcom) (pp. 1-6). IEEE.
https://doi.org/10.1109/HealthCom.2016.7749491
[7]. Seppi, K., Ray Chaudhuri, K., Coelho, M., Fox, S. H.,
Katzenschlager, R., Perez Lloret, S., Djamshidian-Tehrani,
A. (2019). Update on treatments for nonmotor symptoms
of Parkinson's disease—An evidence‐based medicine
review. Movement Disorders, 34(2), 180-198. https://doi.
org/10.1002/mds.27602
[8]. Shetty, S., & Rao, Y. S. (2016, August). SVM based
machine learning approach to identify Parkinson's disease
using gait analysis. In 2016, International Conference on
Inventive Computation Technologies (ICICT) (Vol. 2, pp. 1-
5). IEEE. https://doi.org/10.1109/INVENTIVE.2016.7824836
[9]. Subramanian, K., & Suresh, S. (2012). Human action
recognition using meta-cognitive neuro-fuzzy inference
system. International Journal of Neural Systems, 22(06).
https://doi.org/10.1142/S0129065712500281
[10]. Tayal, A. (2018, October). Determination of
Parkinson's disease utilizing machine learning methods. In
2018, International Conference on Advances in
Computing, Communication Control and Networking
(ICACCCN) (pp. 170-173). IEEE. https://doi.org/10.1109/
ICACCCN.2018.8748662
[11]. Zhang, B., Ren, J., Cheng, Y., Wang, B., & Wei, Z.
(2019). Health data driven on continuous blood pressure
prediction based on gradient boosting decision tree
algorithm. IEEE Access, 7, 32423-32433. https://doi.org/10.
1109/ACCESS.2019.2902217