References
[1]. Flitton, G., Mouton, A., & Breckon, T. P. (2015). Object
classification in 3D baggage security computed
tomography imagery using visual codebooks. Pattern
Recognition, 48(8), 2489-2499. https://doi.org/10.1016/j.
patcog.2015.02.006
[2]. Gadsby, D., Twigg, P., Bowring, N., & Allwork, J. B.
(2005). Weapons detection system for airport baggage
screening. Measurement and Control, 38(5), 140-146.
[3]. Jaccard, N., Rogers, T. W., Morton, E. J., & Griffin, L. D.
(2016, May). Tackling the X-ray cargo inspection challenge
using machine learning. In Anomaly Detection and
Imaging with X-Rays (ADIX) (Vol. 9847, p. 98470N).
International Society for Optics and Photonics. https://doi.
org/10.1117/12.2222765
[4]. Li, G., & Yu, Y. (2018). Contrast-oriented deep neural
networks for salient object detection. IEEE Transactions on
Neural Networks and Learning Systems, 29(12), 6038-
6051. https://doi.org/10.1109/TNNLS.2018.2817540
[5]. Mery, D., Riffo, V., Zscherpel, U., Mondragón, G., Lillo, I.,
Zuccar, I., ..., & Carrasco, M. (2015). GDXray: The
database of X-ray images for nondestructive testing.
Journal of Nondestructive Evaluation, 34(4), 1-12.
https://doi.org/10.1 007/s10921-015-0315-7
[6]. Mery, D., Riffo, V., Zuccar, I., & Pieringer, C. (2013).
Automated X-ray object recognition using an efficient
search algorithm in multiple views. In Proceedings of the
IEEE Conference on Computer Vision and Pattern
Recognition Workshops (pp. 368-374).
[7]. Michel, S., Koller, S. M., de Ruiter, J. C., Moerland, R.,
Hogervorst, M., & Schwaninger, A. (2007, October).
Computer-based training increases efficiency in X-ray
image interpretation by aviation security screeners. In
st 2007, 41 Annual IEEE International Carnahan Conference
on Security Technology (pp. 201-206). IEEE. https://doi.org/
10.1109/CCST.2007.4373490
[8]. Riffo, V., & Mery, D. (2012). Active X-ray testing of
complex objects. Insight-Non-Destructive Testing and
Condition Monitoring, 54(1), 28-35. https://doi.org/10.178
4/insi.2012.54.1.28
[9]. Rogers, T. W., Jaccard, N., & Griffin, L. D. (2017, May). A
deep learning framework for the automated inspection of
complex dual-energy x-ray cargo imagery. In Anomaly
Detection and Imaging with X-Rays (ADIX) II (Vol. 10187, p.
101870L). International Society for Optics and Photonics.
https://doi.org/10.1117/12.2262662
[10]. Shen, Y., Ji, R., Wang, C., Li, X., & Li, X. (2018). Weakly
supervised object detection via object-specific pixel
gradient. IEEE Transactions on Neural Networks and
Learning Systems, 29(12), 5960-5970. https://doi.org/10.11
09/TNNLS.2018.2816021