References
[1]. Aishwarya, V., Chandralekha, R., Sarika, R., Shreeja, J.,
& Pooja, M. R. (2016). Diabetic foot ulcer assessment
through the aid of Smartphone. International Journal of
Computer Engineering and Applications, 10(4), 53-57.
[2]. Boer, G. D., Raske, N., Wang, H., Kow, J., Alazmani, A.,
Ghajari, M., ... & Hewson, R. (2017). Design optimisation of
a magnetic field based soft tactile sensor. Sensors, 17(11),
2539. https://doi.org/10.3390/s17112539
[3]. Bus, S. A., Armstrong, D. G., Gooday, C., Jarl, G.,
Caravaggi, C., Viswanathan, V., ... & International
Working Group on the Diabetic Foot (IWGDF). (2020).
Guidelines on the prevention of foot ulcers in persons with
diabetes (IWGDF 2019 update). Diabetes/metabolism
Research and Reviews, 36(S1), 1-18. https://doi.org/10.
1002/dmrr.3274
[4]. Coates, J., Chipperfield, A., & Clough, G. (2016).
Wearable multimodal skin sensing for the diabetic foot.
Electronics, 5(3), 45. https://doi.org/10.3390/electronics50
30045
[5]. Domingues, M. F., Alberto, N., Leitão, C. S. J., Tavares,
C., de Lima, E. R., Radwan, A., ... & Antunes, P. F. (2017).
Insole optical fiber sensor architecture for remote gait
analysis—An e-health solution. IEEE Internet of Things
Journal, 6(1), 207-214. https://doi.org/10.1109/JIOT.2017.
2723263
[6]. Falanga, V. (2004). The chronic wound: impaired
healing and solutions in the context of wound bed
preparation. Blood Cells, Molecules, and Diseases, 32(1),
88-94. https://doi.org/10.1016/j.bcmd.2003.09.020
[7]. Giovanelli, D., & Farella, E. (2016). Force sensing
resistor and evaluation of technology for wearable body
pressure sensing. Journal of Sensors. https://doi.org/10.
1155/2016/9391850
[8]. Huang, H., Farahanipad, F., & Singh, A. K. (2017). A
stacked dual-frequency microstrip patch antenna for
simultaneous shear and pressure displacement sensing.
[9]. Jadhav, S. S., & Manisha, M. N. (2015). A survey on
wound assessment system patient of foot ulcer diabetes
identification based on Smartphone. International Journal
of Innovative Research in Computer and Communication
Engineering, 11(3), 904-908.
[10]. Jadhav, S. S., & Manisha, M. N. (2015). A survey on
wound assessment system patient of foot ulcer diabetes
identification based on Smartphone. International Journal
of Innovative Research in Computer and Communication
Engineering, 11(3), 904-908.
[11]. Jarl, G., & Tranberg, R. (2017). An innovative sealed
shoe to off-load and heal diabetic forefoot ulcers – A
feasibility study. Diabetic Foot & Ankle, 8(1). https://doi.org/
10.1080/2000625X.2017.1348178
[12]. Khokle, R., Pawar, S., Pune, P., & Janrao, S. (2016).
Wound assessment system for foot ulcer patients
identification based on Smartphone. International Journal
of Emerging Technology and Advanced Engineering, 6(9),
10-13.
[13]. Ramirez-Bautista, J. A., Hernández-Zavala, A.,
Chaparro-Cárdenas, S. L., & Huerta-Ruelas, J. A. (2018).
Review on plantar data analysis for disease diagnosis.
Biocybernetics and Biomedical Engineering, 38(2), 342-
361. https://doi.org/10.1016/j.bbe.2018.02.004
[14]. Salvo, P., Calisi, N., Melai, B., Dini, V., Paoletti, C.,
Lomonaco, T., ... & Romanelli, M. (2017). Temperature-and
pH-sensitive wearable materials for monitoring foot ulcers.
International Journal of Nanomedicine, 12, 949-954.
https://doi.org/10.2147%2FIJN.S121726
[15]. Saratha, M., & Priya, V. M. (2016). Detection of
diabetic wounds based on segmentation using
accelerated mean shift algorithm. International Journal of
Advanced Research in Computer Science and Software
Engineering, 6, 201-206.
[16]. Singh, N., Armstrong, D. G., & Lipsky, B. A. (2005).
Preventing foot ulcers in patients with diabetes. JAMA,
293(2), 217-228. https://doi.org/10.1001/jama.293.2.217
[17]. Tavares, C., Domingues, M. F., Frizera-Neto, A., Leite,
T., Leitão, C., Alberto, N., ... & Antunes, P. (2018). Gait shear and plantar pressure monitoring: a non-invasive OFS based
solution for e-Health architectures. Sensors, 18(5), 1334.
https://doi.org/10.3390/s18051334
[18]. Walsh, J. W., Hoffstad, O. J., Sullivan, M. O., &
Margolis, D. J. (2016). Association of diabetic foot ulcer
and death in a population‐based cohort from the United
Kingdom. Diabetic Medicine, 33(11), 1493-1498. https://
doi.org/10.1111/dme.13054
[19]. Wang, L., Pedersen, P. C., Strong, D. M., Tulu, B., Agu,
E., & Ignotz, R. (2014). Smartphone-based wound
assessment system for patients with diabetes. IEEE
Transactions on Biomedical Engineering, 62(2), 477-488.
https://doi.org/10.1109/TBME.2014.2358632
[20]. Wang, L., Pedersen, P. C., Strong, D. M., Tulu, B., Agu,
E., & Ignotz, R. (2014). Smartphone-based wound
assessment system for patients with diabetes. IEEE
Transactions on Biomedical Engineering, 62(2), 477-488.
https://doi.org/10.1109/TBME.2014.2358632
[21]. Wang, L., Pedersen, P. C., Strong, D., Tulu, B., & Agu, E.
(2013, March). Wound image analysis system for diabetics.
In Medical Imaging 2013: Image Processing (Vol. 8669, p.
866924). International Society for Optics and Photonics.
https://doi.org/10.1117/12.2004762
[22]. Wannous, H., Lucas, Y., & Treuillet, S. (2010).
Enhanced assessment of the wound-healing process by
accurate multiview tissue classification. IEEE Transactions
on Medical Imaging, 30(2), 315-326. https://doi.org/10.
1109/TMI.2010.2077739
[23]. Yazdanpanah, L., Shahbazian, H., Nazari, I., Arti, H.
R., Ahmadi, F., Mohammadianinejad, S. E., ... & Hesam, S.
(2018). Incidence and risk factors of diabetic foot ulcer: a
population-based diabetic foot cohort (ADFC study)—twoyear
follow-up study. International Journal of Endocrinology,
2018, Article ID 7631659. https://doi.org/10.1155/2018/
7631659