References
[1]. Alati, N., Nava, V., Failla, G., Arena, F., & Santini, A.
(2014). On the fatigue behavior of support structures for offshore wind turbines. Wind and Structures, 18(2), 117-
134. https://doi.org/10.12989/was.2014.18.2.117
[2]. ASTM. (2013, February 1). ASTM 1823-2013: Standard
Terminology Relating to Fatigue and Fracture Testing.
American Society for Testing and Materials, PA: West
Conshohocken.
[3]. Chen, L., & Basu, B. (2018). Fatigue load estimation of
a spar-type floating offshore wind turbine considering
wave-current interactions. International Journal of
Fatigue, 116, 421-428. https://doi.org/10.1016/j.ijfatigue.
2018.06.002
[4]. Froese, M. (2019, February 6). Excipio Energy Unveils
New Hybrid Floating Offshore Wind Platform. Wind Power
Engineering & Development. Retrieved from https://www.
windpowerengineering.com/excipio-energy-unveilsnew-
hybrid-floating-offshore-wind-platform/
[5]. Hasegawa, K., Li, Y., Bezensek, B., Hoang, P. H., &
Rathbun, H. J. (2016). Technical basis for application of
collapse moments for locally thinned pipes subjected to
torsion and bending proposed for ASME Section XI.
Journal of Pressure Vessel Technology, 138(1), 1-8.
https://doi.org/ 10.1115/1.4031505
[6]. Jimenez-Martinez, M. (2020). Fatigue of offshore
structures: A review of statistical fatigue damage
assessment for stochastic loadings. International Journal
of Fatigue, 132, 105327. https://doi.org/10.1016/j.
ijfatigue.2019.105327
[7]. Li, H., Diaz, H., & Soares, C. G. (2020). A developed
failure mode and effect analysis for floating offshore wind
turbine support structures. Renewable Energy, 164, 133-
145. https://doi.org/10.1016/j.renene.2020.09.033
[8]. Li, Y., Hasegawa, K., Miura, N., & Hoshino, K. (2013).
Experimental investigation of failure estimation method
for stainless steel pipes with a circumferential crack
subjected to combined tensile and torsion loads. Journal
of Pressure Vessel Technology, 135(4), 1-8. https://doi.org/
10.1115/1.4023735
[9]. Li, Y., Hasegawa, K., Miura, N., & Hoshino, K. (2017).
Experimental study on failure estimation method for
circumferentially cracked pipes subjected to multi-axial
loads. Journal of Pressure Vessel Technology, 139(1), 1-10. https://doi.org/10.1115/1.4033531
[10]. Miura, N., Hoshino, K., Li, Y., & Hasegawa, K. (2013).
Experimental investigation on net-section-collapse
criterion for circumferentially cracked cylinders subjected
to torsional moment. Journal of Pressure Vessel
Technology, 136(3), 031204-1-031204-5. https://doi.org/
10.1115/1.4026277
[11]. Yeter, B., Garbatov, Y., & Soares, C. G. (2015). Fatigue damage assessment of fixed offshore wind turbine tripod
support structures. Engineering Structures, 101, 518-528.
https://doi.org/10.1016/j.engstruct.2015.07.038
[12]. Yeter, B., Garbatov, Y., & Soares, C. G. (2016).
Evaluation of fatigue damage model predictions for fixed
offshore wind turbine support structures. International
Journal of Fatigue, 87, 71-80. https://doi.org/10.1016/j.
ijfatigue.2016.01.007