References
[1]. Atias, L., Teman, A., Giterman, R., Meinerzhagen, P., &
Fish, A. (2016). A low-voltage radiation-hardened 13T SRAM
bitcell for ultralow power space applications. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems,
24(8), 2622-2633. https://doi.org/10.1109/TVLSI.2016.2518
220
[2]. Bhaskar, A. (2017, April). Design and analysis of low
power SRAM cells. In 2017, Innovations in Power and
Advanced Computing Technologies (i-PACT) (pp. 1-5).
IEEE. https://doi.org/10.1109/IPACT.2017.8244888
[3]. Guo, J., Xiao, L., & Mao, Z. (2014). Novel low-power
and highly reliable radiation hardened memory cell for 65
nm CMOS technology. IEEE Transactions on Circuits and
Systems I: Regular Papers, 61(7), 1994-2001. https://doi.
org/10.1109/TCSI.2014.2304658
[4]. Han, Y., Cheng, X., Han, J., & Zeng, X. (2020).
Radiation-hardened 0.3–0.9-V voltage-scalable 14T SRAM
and peripheral circuit in 28-nm technology for space
applications. IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, 28(4), 1089-1093. https://doi.org/
10.1109/TVLSI.2019.2961736
[5]. Jahinuzzaman, S. M., Rennie, D. J., & Sachdev, M.
(2009). A soft error tolerant 10T SRAM bit-cell with differential
read capability. IEEE Transactions on Nuclear Science,
56(6), 3768-3773. https://doi.org/10.1109/TNS.2009.2032
090
[6]. Jung, I. S., Kim, Y. B., & Lombardi, F. (2012, August). A
novel sort error hardened 10T SRAM cells for low voltage
operation. In 2012, IEEE 55th International Midwest
Symposium on Circuits and Systems (MWSCAS) (pp. 714-
717). IEEE. https://doi.org/10.1109/MWSCAS.2012.6292120
[7]. Narasimham, B., Wang, J. K., Vedula, N., Gupta, S.,
Bartz, B., Monzel, C., ... & Reed, R. A. (2015, April).
Influence of supply voltage on the multi-cell upset soft error
sensitivity of dual-and triple-well 28 nm CMOS SRAMs. In
2015, IEEE International Reliability Physics Symposium (pp.
2C-4). IEEE. https://doi.org/10.1109/IRPS.2015.7112679
[8]. Peng, C., Huang, J., Liu, C., Zhao, Q., Xiao, S., Wu, X.,
... & Zeng, X. (2018). Radiation-hardened 14T SRAM bitcell
with speed and power optimized for space application.
IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 27(2), 407-415. https://doi.org/10.1109/TVLSI.
2018.2879341
[9]. Qi, C., Xiao, L., Wang, T., Li, J., & Li, L. (2016). A highly
reliable memory cell design combined with layout-level
approach to tolerant single-event upsets. IEEE Transactions
on Device and Materials Reliability, 16(3), 388-395. https://
doi.org/10.1109/TDMR.2016.2593590
[10]. Rajaei, R., Asgari, B., Tabandeh, M., & Fazeli, M.
(2015). Design of robust SRAM cells against single-event
multiple effects for nanometer technologies. IEEE
Transactions on Device and Materials Reliability, 15(3),
429-436. https://doi.org/10.1109/TDMR.2015.2456832
[11]. Singariya, V., & Mishra, D. K. (2014). Comparison of
various n-T SRAM cell fot improvement of power, speed and
SNM. International Journal of Digital Application & Contemporary Research, 2(12), 1-6.
[12]. Wang, H. B., Bi, J. S., Li, M. L., Chen, L., Liu, R., Li, Y. Q.,
... & Guo, G. (2014). An area efficient SEU-tolerant latch design. IEEE Transactions on Nuclear Science, 61(6), 3660-
3666. https://doi.org/10.1109/TNS.2014.2361514