References
[1]. Alizadeh, S., & Fazel, A. (2017). Convolutional neural
networks for facial expression recognition. In IEEE
Conference on Computer Vision and Pattern Recognition
(CVPR). Retrieved from http://cs231n.stanford.edu/reports/
2016/pdfs/005_Report.pdf
[2]. Cotter, S. F. (2010a, August). Weighted voting of sparse
representation classifiers for facial expression recognition.
th In 2010, 18 European Signal Processing Conference (pp.
1164-1168). IEEE.
[3]. Cotter, S. F. (2010b, March). Sparse representation for
accurate classification of corrupted and occluded facial
expressions. In 2010, IEEE International Conference on
Acoustics, Speech and Signal Processing (pp. 838-841).
IEEE. https://doi.org/10.1109/ICASSP.2010.5494903
[4]. Ebrahimi Kahou, S., Michalski, V., Konda, K.,
Memisevic, R., & Pal, C. (2015, November). Recurrent
neural networks for emotion recognition in video. In
Proceedings of the 2015 ACM on International
Conference on Multimodal Interaction (pp. 467-474).
https://doi.org/10.1145/2818346.2830596
[5]. Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science,
313(5786), 504-507. https://doi.org/10.1126/science.112
7647
[6]. Kim, P. (2017). Matlab deep learning. Machine
Learning, Neural Networks and Artificial Intelligence.
Switzerland: Springer Nature. https://doi.org/10.1007/978-
1-4842-2845-6
[7]. Kotsia, I., Buciu, I., & Pitas, I. (2008). An analysis of facial
expression recognition under partial facial image
occlusion. Image and Vision Computing, 26(7), 1052-
1067. https://doi.org/10.1016/j.imavis.2007.11.004
[8]. Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012).
ImageNet classification with deep convolutional neural
networks. Advances in Neural Information Processing
Systems, 25, 1097-1105.
[9]. Li, Y., Zeng, J., Shan, S., & Chen, X. (2018). Occlusion
aware facial expression recognition using CNN with
attention mechanism. IEEE Transactions on Image
Processing, 28(5), 2439-2450. https://doi.org/10.1109/TIP.
2018.2886767
[10]. Liu, P., Han, S., Meng, Z., & Tong, Y. (2014). Facial
expression recognition via a boosted deep belief network.
In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (pp. 1805-1812).
[11]. Mollahosseini, A., Chan, D., & Mahoor, M. H. (2016,
March). Going deeper in facial expression recognition
using deep neural networks. In 2016, IEEE Winter
Conference on Applications of Computer Vision (WACV)
(pp. 1-10). IEEE. https://doi.org/10.1109/WACV.2016.7477
450
[12]. Pantic, M., & Rothkrantz, L. J. (2004). Facial action
recognition for facial expression analysis from static face
images. IEEE Transactions on Systems, Man, and
Cybernetics, Part B (Cybernetics), 34(3), 1449-1461.
https://doi.org/10.1109/TSMCB.2004.825931
[13]. Singh, S., & Nasoz, F. (2020). Facial expression
th recognition with convolutional neural networks. In 2020, 10
Annual Computing and Communication Workshop and
Conference (CCWC) (pp. 0324-0328). IEEE. https://doi.
org/10.1109/CCWC47524.2020.9031283
[14]. Wang, K., Peng, X., Yang, J., Meng, D., & Qiao, Y.
(2020). Region attention networks for pose and occlusion
robust facial expression recognition. IEEE Transactions on
Image Processing, 29, 4057-4069. https://doi.org/10.110
9/TIP.2019.2956143
[15]. Wu, Y., & Qiu, W. (2017, July). Facial expression
recognition based on improved local ternary pattern and
stacked auto-encoder. In AIP Conference Proceedings
(Vol. 1864, No. 1). AIP Publishing LLC. https://doi.org/10.106
3/1.4992948