References
[1]. Arena, P., Fortuna, L., Occhipinti, L., & Xibilia, M. G. (1994, May). Neural networks for quaternion-valued function approximation. In Proceedings of IEEE International Symposium on Circuits and Systems-ISCAS'94 (Vol. 6, pp. 307-310). IEEE. https://doi.org/10.1109/ISCAS.1994.409587
[2]. Collobert, R. (2004). Large scale machine learning (Thesis Library). Université de Paris VI, Paris.
[3]. Dataman. (2018, November 8). What is image recognition? Dataman in AI. Retrieved from https:// medium.com/dataman-in-ai/module-6-image-recognii on-for-insurance-claim-handling-part-i-a338 d16c9de
[4]. Ganesh, P. (2019, October 18). Types of convolution kernels: Simplified. Towards Data Science. https://towards datascience.com/types-of-convolution-kernels-simplifiedf040cb307c37
[5]. He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 770-778).
[6]. Kingma, D. P., & Ba, J. (2015). Adam: A method for rd stochastic optimization. [Poster Presentation]. In 3 International Conference on Learning Representations, ICLR 2015, Retrieved from https://arxiv.org/pdf/1412. 6980.pdf
[7]. Madali, N. (2020, July 20). Quaternion convolutional neural networks. Retrieved from https://medium.com/@ nabil.madali/quaternion-convolutional-neural-networksd87faad6cc46
[8]. Nitta, T. (1995, November). A quaternary version of the back-propagation algorithm. In Proceedings of ICNN'95- International Conference on Neural Networks (Vol. 5, pp. 2753-2756). IEEE. https://doi.org/10.1109/ICNN.1995.4881 66
[9]. Parcollet, T., Morchid, M., & Linarès, G. (2019, May). Quaternion convolutional neural networks for heterogeneous image processing. In ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 8514-8518). IEEE. https://doi.org/10.1109/ICASSP.2019.8682495
[10]. Parcollet, T., Ravanelli, M., Morchid, M., Linarès, G., Trabelsi, C., De Mori, R., & Bengio, Y. (2018). Quaternion recurrent neural networks. In 7th International Conference on Learning Representations (ICLR 2019). Retrieved from https://openreview.net/pdf?id=ByMHvs0cFQ
[11]. Sangwine, S. J. (1996). Fourier transforms of colour images using quaternion or hypercomplex, numbers. Electronics Letters, 32(21), 1979-1980.
[12]. Socher, R., & Mundra, R. (2015). Deep learning for NLP [Lecture Notes]. https://cs224d.stanford.edu/lecture_ notes/LectureNotes4.pdf.
[13]. Zhu, X., Xu, Y., Xu, H., & Chen, C. (2018). Quaternion convolutional neural networks. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 631-647).