Smart Healthcare using Internet of Things (IoT) for Remote Diagnosis of Covid-19 Patients

0*, Renuka Suryawanshi **
* Department of Information Technology, Government Polytechnic Daman, Diu and Daman, India.
** School of Computer Engineering And Technology, Dr.Vishwanath Karat MIT World Peace University, Pune, Maharashtra, India.
Periodicity:October - December'2020
DOI : https://doi.org/10.26634/jse.15.2.18075
World Health Organization : COVID-19 - Global literature on coronavirus disease
https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/covidwho-1350633
ProQuest Central | ID: covidwho-1350633

Abstract

COVID-19 (SARS CoV-2) has already claimed more than 3.3 million lives worldwide. Many patients of COVID-19 are suffering from Mucormycosis. The use of technology helps to improve accuracy, saves time and energy to make precise decisions that will save lives of patients. Day by day new problems arise and IoT, Cloud Computing, Big Data, Machine Learning, Artificial Intelligence, etc. have been helping to analyze new problems more quickly and supports better design strategies. The sensor-based devices feeds the data to process, analyze and provide a solution. Machine Learning Algorithms are used to make precise decisions with the help of existing data repository with similar kinds of symptoms in patients, history of allergies, surgeries, and treatment. This proposed model will help to guide medical professionals to provide solutions to the problems arising in the treatment of COVID-19 and post-treatment diseases like Mucormycosis (also known as Zygomycosis).

Keywords

IoT, COVID-19, Mucormycosis, Machine Learning (ML), Cloud Computing, Big Data, Wearable Sensors.

How to Cite this Article?

Mate, S., and Suryawanshi, R. (2020). Smart Healthcare using Internet of Things (IoT) for Remote Diagnosis of Covid-19 Patients. i-manager's Journal on Software Engineering, 15(2), 15-24. https://doi.org/10.26634/jse.15.2.18075

References

[1]. Akmandor, A. O., & Jha, N. K. (2017). Smart health care: An edge-side computing perspective. IEEE Consumer Electronics Magazine, 7(1), 29-37. https://doi. org/10.1109/MCE.2017.2746096
[2]. Azizy, A., Fayaz, M., & Agirbasli, M. (2020). Do not forget Afghanistan in times of COVID-19: telemedicine and the Internet of things to strengthen planetary health systems. Omics: A Journal of Integrative Biology, 24(6), 311-313. https://doi.org/10.1089/omi.2020.0053
[3]. Bai, L., Yang, D., Wang, X., Tong, L., Zhu, X., Zhong, N., ..., & Tan, F. (2020). Chinese experts' consensus on the Internet of Things-aided diagnosis and treatment of coronavirus disease 2019 (COVID-19). Clinical eHealth, 3, 7-15. https://doi.org/10.1016/j.ceh.2020.03.001
[4]. Bloss, R. (2017). Multi-technology sensors are being developed for medical, manufacturing, personal health and other applications not previously possible with historic single-technology sensors. Sensor Review, 37(4), 385–389. https://doi.org/10.1108/SR-04-2017-0063
[5]. Bullough, W. A. (1991). Electro-rheological fluids: An introduction for biomedical applications. Journal of Biomedical Engineering, 13(3), 234-238. https://doi.org/ 10.1016/0141-5425(91)90133-R
[6]. Chan, M., Estève, D., Fourniols, J. Y., Escriba, C., & Campo, E. (2012). Smart wearable systems: Current status and future challenges. Artificial Intelligence in Medicine, 56(3), 137-156. https://doi.org/10.1016/j.artmed.2012.09. 003
[7]. Chang, M. C., Hur, J., & Park, D. (2020). Interpreting the COVID-19 test results: a guide for physiatrists. American Journal of Physical Medicine & Rehabilitation. https://doi. org/10.1097/PHM.0000000000001471
[8]. Cherenack, K., & Van Pieterson, L. (2012). Smart textiles: Challenges and opportunities. Journal of Applied Physics, 112(9). https://doi.org/10.1063/1.4742728
[9]. Du, H., Liu, Z., Li, Q., Yan, J. Q., & Tang, Q. L. (2007). A novel hyperspectral medical sensor for tongue diagnosis. Sensor Review, 27(1), 57–60. https://doi.org/10.1108/026 02280710723497
[10]. Espressif (n.d.). ESP8266-DevKitC Getting Started Guide. Espressif Systems. Retrieved from https://docs.es pressif.com/projects/esp8266-rtos-sdk/en/latest/getstarted/ get-started-devkitc.html
[11]. Farmer, J. (1997). Blood oxygen measurement, In Webster, J. G. (Ed.) Design of pulse oximeters. CRC Press. (pp. 35-53).
[12]. Greco, L., Percannella, G., Ritrovato, P., Tortorella, F., & Vento, M. (2020). Trends in IoT based solutions for health care: Moving AI to the edge. Pattern Recognition Letters, 135, 346-353. https://doi.org/10.1016/j.patrec.2020.05.016
[13]. Haleem, A., & Javaid, M. (2019). Industry 5.0 and its applications in orthopaedics. Journal of Clinical Orthopaedics and Trauma, 10(4), 807-808. https://doi. org/10.1016%2Fj.jcot.2018.12.010
[14]. Hegde, C., Jiang, Z., Suresha, P. B., Zelko, J., Seyedi, S., Smith, M. A., ..., & Clifford, G. D. (2020). Autotriage-an open source edge computing raspberry pi-based clinical screening system. MedRxiv. https://doi.org/10.1101/ 2020. 04.09.20059840
[15]. ICMR. (2020). Evidence based advisory on correlation of COVID-19 disease severity with Ct values of the real time RT-PCR test. Retrieved from https://www.icmr. gov.in/pdf/covid/techdoc/Advisory_on_correlation_of_ COVID_severity_with_Ct_values.pdf
[16]. Jacq, C., Maeder, T., & Ryser, P. (2009). Load sensing surgical instruments. Journal of Materials Science: Materials in Medicine, 20(1), 223-227. https://doi.org/ 10.1007/s10856-008-3533-z
[17]. Javaid, M., & Haleem, A. (2019). Industry 4.0 applications in medical field: A brief review. Current Medicine Research and Practice, 9(3), 102-109. https://doi.org/10.1016/j.cmrp.2019.04.001
[18]. Javaid, M., & Khan, I. H. (2021). Internet of Things (IoT) enabled healthcare helps to take the challenges of COVID-19 pandemic. Journal of Oral Biology and Craniofacial Research, 11(2), 209-214. https://doi.org/ 10.1016/j.jobcr.2021.01.015
[19]. Kaur, A., & Jasuja, A. (2017, May). Health monitoring based on IoT using Raspberry Pi. In 2017, International Conference on Computing, Communication and Automation (ICCCA) (pp. 1335-1340). IEEE. https://doi.org/ 10.1109/CCAA.2017.8230004
[20]. Kim, S., Kim, H., & Moon, D. (2020, January). A controller design for oxygen concentrator. In 2020, International Conference on Electronics, Information, and Communication (ICEIC) (pp. 1-3). IEEE. https://doi.org/10.1 109/ICEIC49074.2020.9051173
[21]. Kumar, S., Raut, R. D., & Narkhede, B. E. (2020). A proposed collaborative framework by using artificial intelligence-internet of things (AI-IoT) in COVID-19 pandemic situation for healthcare workers. International Journal of Healthcare Management, 13(4), 337-345. https://doi.org/10.1080/20479700.2020.1810453
[22]. Lai, Y. L., Chou, Y. H., & Chang, L. C. (2018). An intelligent IoT emergency vehicle warning system using RFID and Wi-Fi technologies for emergency medical services. Technology and Health Care, 26(1), 43-55. https://doi.org/10.3233/THC-171405
[23]. Li, C. T., Wu, T. Y., Chen, C. L., Lee, C. C., & Chen, C. M. (2017). An efficient user authentication and user anonymity scheme with provably security for IoT-based medical care system. Sensors, 17(7), 1482-1488. https:// doi.org/10.3390/s17071482
[24]. Liu, Y., Dong, B., Guo, B., Yang, J., & Peng, W. (2015). Combination of cloud computing and internet of things (IOT) in medical monitoring systems. International Journal of Hybrid Information Technology, 8(12), 367-376. https:// doi.org/10.14257/ijhit.2015.8.12.28
[25]. Mekonnen, Z. K., Ashraf, D. C., Jankowski, T., Grob, S. R., Vagefi, M. R., Kersten, R. C., ..., & Winn, B. J. (2021). Acute invasive rhino-orbital mucormycosis in a patient with COVID-19-associated acute respiratory distress syndrome. Ophthalmic Plastic and Reconstructive Surgery, 37(2), e40–e80. https://doi.org/10.1097/IOP.0000000000001889
[26]. Muhammad, G., Rahman, S. M. M., Alelaiwi, A., & Alamri, A. (2017). Smart health solution integrating IoT and cloud: A case study of voice pathology monitoring. IEEE Communications Magazine, 55(1), 69-73. https://doi.org/ 10.1109/MCOM.2017.1600425CM
[27]. Murali, D., Rao, D. R., Rao, S. R., & Ananda, M. (2018, September). Pulse oximetry and IOT based cardiac monitoring integrated alert system. In 2018, International Conference on Advances in Computing, Communications and Informatics (ICACCI) (pp. 2237-2243). IEEE. https://doi. org/10.1109/icacci.2018.8554425
[28]. Nasajpour, M., Pouriyeh, S., Parizi, R. M., Dorodchi, M., Valero, M., & Arabnia, H. R. (2020). Internet of Things for current COVID-19 and future pandemics: An exploratory study. Journal of healthcare Informatics Research, 1-40. https://doi.org/10.1007/s41666-020-00080-6
[29]. Nemati, E., Deen, M. J., & Mondal, T. (2012). A wireless wearable ECG sensor for long-term applications. IEEE Communications Magazine, 50(1), 36-43. https://doi.org/ 10.1109/MCOM.2012.6122530
[30]. Orha, I., & Oniga, S. (2013, October). Automated system for evaluating health status. In 2013, IEEE 19th International Symposium for Design and Technology in Electronic Packaging (SIITME) (pp. 219-222). IEEE. https://doi.org/10.1109/SIITME.2013.6743677
[31]. Otoom, M., Otoum, N., Alzubaidi, M. A., Etoom, Y., & Banihani, R. (2020). An IoT-based framework for early identification and monitoring of COVID-19 cases. Biomedical Signal Processing and Control, 62, 1-9. https://doi.org/10.1016/j.bspc.2020.102149
[32]. Park, S., Vosguerichian, M., & Bao, Z. (2013). A review of fabrication and applications of carbon nanotube filmbased flexible electronics. Nanoscale, 5(5), 1727-1752.
[33]. Rath, M., & Pattanayak, B. (2019). Technological improvement in modern health care applications using Internet of Things (IoT) and proposal of novel health care approach. International Journal of Human Rights in Healthcare, 12(2), 148-162. https://doi.org/10.1108/IJHRH-01-2018-0007
[34]. Ruiz-Fernández, D., Marcos-Jorquera, D., Gilart- Iglesias, V., Vives-Boix, V., & Ramírez-Navarro, J. (2017). Empowerment of patients with hypertension through BPM, IoT and remote sensing. Sensors, 17(10). https://doi.org/ 10.3390/s17102273
[35]. Shin, D., & Hwang, Y. (2017). Integrated acceptance and sustainability evaluation of Internet of Medical Things. Internet Research, 27(5), 12271254. https://doi.org/10.110 8/IntR-07-2016-0200
[36]. Sibinski, M., Jakubowska, M., & Sloma, M. (2010). Flexible temperature sensors on fibers. Sensors, 10(9), 7934-7946. https://doi.org/10.3390/s100907934
[37]. Singh, S., Bansal, A., Sandhu, R., & Sidhu, J. (2018). Fog computing and IoT based healthcare support service for dengue fever. International Journal of Pervasive Computing and Communications, 14(2), 197–207.
[38]. Siriwardhana, Y., De Alwis, C., Gür, G., Ylianttila, M., & Liyanage, M. (2020). The fight against the COVID-19 pandemic with 5G technologies. IEEE Engineering Management Review, 48(3), 72-84. https://doi.org/10.11 09/EMR.2020.3017451
[39]. Sood, S. K., & Mahajan, I. (2017). Wearable IoT sensor based healthcare system for identifying and controlling chikungunya virus. Computers in Industry, 91, 33-44. https://doi.org/10.1016/j.compind.2017.05.006
[40]. Sterne, J. A., Murthy, S., Diaz, J. V., Slutsky, A. S., Villar, J., Angus, D. C., ..., & Marshall, J. C. (2020). Association between administration of systemic corticosteroids and mortality among critically ill patients with COVID-19: A meta-analysis. JAMA, 324(13), 1330-1341. https://doi.org/ 10.1001/jama.2020.17023
[41]. Syed, L., Jabeen, S., Manimala, S., & Alsaeedi, A. (2019). Smart healthcare framework for ambient assisted living using IoMT and big data analytics techniques. Future Generation Computer Systems, 101, 136-151. https://doi. org/10.1016/j.future.2019.06.004
[42]. Tseng, K. C., Lin, B. S., Liao, L. D., Wang, Y. T., & Wang, Y. L. (2013). Development of a wearable mobile electrocardiogram monitoring system by using novel dry foam electrodes. IEEE Systems Journal, 8(3), 900-906. https://doi.org/10.1109/JSYST.2013.2260620
[43]. Uddin, M. Z. (2019). A wearable sensor-based activity prediction system to facilitate edge computing in smart healthcare system. Journal of Parallel and Distributed Computing, 123, 46-53. https://doi.org/10.1016/j.jpdc. 2018.08.010
[44]. Vafea, M. T., Atalla, E., Georgakas, J., Shehadeh, F., Mylona, E. K., Kalligeros, M., & Mylonakis, E. (2020). Emerging technologies for use in the study, diagnosis, and treatment of patients with COVID-19. Cellular and Molecular Bioengineering, 13(4), 249-257. https://doi.org/ 10.1007/s12195-020-00629-w
[45]. Werthman-Ehrenreich, A. (2021). Mucormycosis with orbital compartment syndrome in a patient with COVID- 19. The American Journal of Emergency Medicine, 42, 264.e5-264.e8. https://doi.org/10.1016/j.ajem.2020.09.0n32
[46]. Wieben, O. (1997). Light absorbance in pulse oximetry. In Webster, J. G. (Ed.) Design of pulse oximeters. CRC Press. (pp. 40-55).
[47]. Xu, S., Sun, L., & Rohde, G. K. (2014). Robust efficient estimation of heart rate pulse from video. Biomedical Optics Express, 5(4), 1124-1135. https://doi.org/10.1364/ BOE.5.001124
[48]. Zeng, W., Shu, L., Li, Q., Chen, S., Wang, F., & Tao, X. M. (2014). Fiber based wearable electronics: A review of materials, fabrication, devices, and applications. Advanced Materials, 26(31), 5310-5336. https://doi.org/ 10.1002/adma.201400633
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.