References
[1]. Abdel-Kader, H., Abd-El Salam, M., & Mohamed, M.
(2018). Hybrid machine learning model for rainfall
forecasting. Journal of Intelligent Systems and Internet of Things, 1(1), 5-12. https://doi.org/10.5281/zenodo.3376685
[2]. Charumathi, S., Kaviya, R. M., Kumariyarasi, J.,
Manisha, R., & Dhivya, P. (2017). Optimization and control
of hydroponics agriculture using IOT. Asian Journal of
Appied Science and Technology, 1(2), 96-98.
[3]. Hamrita, T. K., Deal, K., Gant, S., & Selsor, H. (2021).
Precision agriculture: An overview of the field and women's
contributions to it. In Hamrita T. (Ed.) Women in Precision
Agriculture, (pp. 1-34). Women in Engineering and
Science. Cham: Springer. (pp. 1-34). https://doi.org/10.10
07/978-3-030-49244-1_1
[4]. Jain, S., Alam, M. A., & Bokhari, M. U. (2021). Future
hydroponic systems using IOT for sustainable agriculture. In
International Conference on ICT for Digital, Smart, and
Sustainable Development (ICIDSSD) 2020. https://doi.org/
10.4108/eai.27-2-2020.2303233
[5]. Kamelia, L., Nugraha, Y. S., Effendi, M. R., & Priatna, T.
(2019, July). The IoT-based monitoring systems for humidity
and soil acidity using wireless communication. In 2019 IEEE
5th International Conference on Wireless and Telematics
(ICWT) (pp. 1-4). IEEE. https://doi.org/10.1109/ICWT47785.
2019.8978243
[6]. KaurN.,& Deep G. (2021). IoT-based brinjal crop
monitoring system. In Smart Sensors for Industrial Internet of
Things (Technology, Communications, and Computing).
Cham: Springer. https://doi.org/10.1007/978-3-030-526
24-5_15
[7]. Khoa, T. A., Man, M. M., Nguyen, T. Y., Nguyen, V., &
Nam, N. H. (2019). Smart agriculture using IoT multi-sensors:
A novel watering management system. Journal of Sensor
and Actuator Networks, 8(3). https://doi.org/10.3390/jsan
8030045
[8]. Luster, J. (n.d.). Measurement tools: Soil systems. In
Environmental Systems (Vol I): Encyclopedia of Life Support
Systems (EOLSS).
[9]. Madaswamy, M. (2020). Digitalization of agriculture in
India: Application of IoT, robotics and informatics to
establish farm extension 4.0. Journal of Informatics and
Innovative Technologies (JIIT), 4(2), 23-32.
[10]. Manjula, E., & Djodiltachoumy, S. (2017). Data mining
technique to analyze soil nutrients based on hybrid classification. International Journal of Advanced Research
in Computer Science, 8(8), 505-510. https://doi.org/10.26
483/ijarcs.v8i8.4794
[11]. Report and Data. (2020, January 16). Agricultural Sensors Market Analysis, By Type (Location Sensors,
Humidity Sensors, Electrochemical Sensors, Airflow
Sensors, Optical Sensors, Pressure Sensors, Water Sensors,
Soil Sensors, Livestock Sensors), By Application Forecasts To
2026. Marketysers Global Consulting LLP. Retrieved from
https://www.reportsanddata.com/report-detail/agricultur
al-sensors-market
[12]. Ullah, R., Abbas, A. W., Ullah, M., Khan, R. U., Khan, I.
U., Aslam, N., & Aljameel, S. S. (2021). EEWMP: An IoT-based
energy-efficient water management platform for smart
irrigation. Scientific Programming. https://doi.org/10.115
5/2021/5536884
[13]. Wasson, T., Choudhury, T., Sharma, S., & Kumar, P.
(2017, August). Integration of RFID and sensor in agriculture
using IoT. In 2017 International Conference On Smart
Technologies For Smart Nation (SmartTechCon) (pp. 217-
222). IEEE. https://doi.org/10.1109/smarttechon.2017.83
58372
[14]. Whalen, J. K. (2021). Perspectives to increase the
precision of soil fertility management on farms. In Hamrita T.
(Ed.) Women in Precision Agriculture, (pp. 55-68). Women
in Engineering and Science. Cham: Springer. https://doi.
org/10.1007/978-3-030-49244-1
[15]. Zhang, M., Wang, N., & Chen, L. (2021). Sensing
technologies and automation for precision agriculture. In
Hamrita T. (Ed.) Women in Precision Agriculture, (pp. 35-54).
Women in Engineering and Science. Cham: Springer.
https://doi.org/10.1007/978-3-030-49244-1