References
[1]. Appleyard, M., & Wellstead, P. E. (1995). Active suspensions: Some background. IEE Proceedings-Control Theory and Applications, 142(2), 123-128. https://doi.org/ 10.1049/ip-cta:19951735
[2]. Cao, J., Liu, H., Li, P., & Brown, D. J. (2008). State of the art in vehicle active suspension adaptive control systems based on intelligent methodologies. IEEE Transactions on Intelligent Transportation Systems, 9(3), 392-405. https:// doi.org/10.1109/TITS.2008.928244
[3]. Deore, H. S., Aware, S., Wani, C., & Sonawane, D. (2018). Design and analysis of double wishbone suspension system for an ATV. International Conference on Recent Trends in Engineering & Technology (ICRTET) (pp. 571-574).
[4]. Goodarzi, A., & Khajepour, A. (2017). Vehicle suspension system technology and design. Synthesis Lectures on Advances in Automotive Technology, 1(1), 1- 77. https://doi.org/10.2200/S00767ED1V01Y201704MEC0 02
[5]. Gunjan, P., & Sarda, A. (2018). Optimization approach of front lower wishbone suspension arm. International Journal of Advance Research and Innovative Ideas in Education (IJARIIE), 4(2), 305- 308.
[6]. Ijagbemi, C. O., Oladapo, B. I., Campbell, H. M., & Ijagbemi, C. O. (2016). Design and simulation of fatigue analysis for a vehicle suspension system (VSS) and its effect on global warming. Procedia Engineering, 159, 124-132.
[6]. Ijagbemi, C. O., Oladapo, B. I., Campbell, H. M., & Ijagbemi, C. O. (2016). Design and simulation of fatigue analysis for a vehicle suspension system (VSS) and its effect on global warming. Procedia Engineering, 159, 124-132.
[8]. Kulkarni, V., Jadhav, A., & Basker, P. (2014). Finite element analysis and topology optimization of lower arm of double wishbone suspension using RADIOSS and optistruct. International Journal of Science and Research, 3(5), 639-643.
[9]. Kumar, A. C. (2020). Failure analysis of suspension system through bond graph. International Journal of Mechanical and Production Engineering Research and Development, 10(3), 11823–11832.
[10]. Mahamuni, D. J., & Shinde, T. R. (2015). Weight reduction of chassis by weight optimization of wishbone arm. International Education and Research Journal (IERJ), 5869-5872.
[11]. Mahmoodi-Kaleibar, M., Javanshir, I., Asadi, K., Afkar, A., & Paykani, A. (2013). Optimization of suspension system of off-road vehicle for vehicle performance improvement. Journal of Central South University, 20(4), 902-910. https://doi.org/10.1007/s11771-013-1564-1
[12]. Manjhi, M. K., Khadanga, S., Sahoo, B., SusarthakRath, Guru, K., & Murarji, P. (2017). Design and analysis of suspension system of an off road vehicle (all terrain vehicle). International Journal of Innovative Research in Technology (IJIRT), 3(11), 134-141.
[13]. Omar, M., El-Kassaby, M. M., & Abdelghaffar, W. (2017). A universal suspension test rig for electrohydraulic active and passive automotive suspension system. Alexandria Engineering Journal, 56(4), 359-370. https:// doi.org/10.1016/j.aej.2017.01.024
[14]. Pachauri, H., Saini, V. K., Kumar, S., & Bhardwaj, B. (2017). Design and analysis of independent suspension system for an all-terrain vehicle. International Journal for Research in Applied Science and Engineering Technology, 5(V).
[15]. Patil, A. M., Todkar, A. S., Mithari, R. S., & Patil, V. V. (2013). Experimental & finite element analysis of left side lower wishbone arm of independent suspension system. IOSR Journal of Mechanical and Civil Engineering, 7(2), 43-48. https://doi.org/10.9790/1684-0724348
[16]. Patil, P. B., & Kharade, M. V. (2016). Finite element analysis and experimental validation of lower wishbone arm. International Journal of Engineering Development and Research, 4(4), 769-775.
[17]. Prashanthasamy, R. M. T., Sathisha, Imran Ali, M. R., & Jnanesh, K. (2016). Design and modal analysis of lower wishbone suspension arm using FE approach. Imperial Journal of Interdisciplinary Research (IJIR), 2(9), 858-863.
[18]. Saurabh, Y. S., Kumar, S., Jain, K. K., Behera, S. K., Gandhi, D., Raghavendra, S., & Kalita, K. (2016). Design of suspension system for formula student race car. Procedia Engineering, 144, 1138-1149. https://doi.org/10.1016/j. proeng.2016.05.081
[19]. Singh, J., & Saha, S. (2018). Static structural analysis of suspension arm using finite element method. International Journal of Research in Engineering and Technology, 4(7), 402-406.
[20]. Soo, V. K., Compston, P., & Doolan, M. (2015). Interaction between new car design and recycling impact on life cycle assessment. Procedia CIRP, 29, 426-431.
[21]. Taksande, M. S. P., & Vanalkar, A. V. (2015). Design, modelling and failure analysis of car front suspension lower arm. International Journal of Science Technology & Engineering, 2(1), 235-249.
[22]. Williams, R. A. (1994). Electronically controlled automotive suspensions. Computing & Control Engineering Journal, 5(3), 143-148. https://doi.org/10.104 9/cce:19940310