References
[1]. Andreassen, S. N., Ben Ezra, M., & Scheibye-Knudsen, M.
(2019). A defined human aging phenome. Aging, 11(15),
5786-5806. https://doi.org/10.18632/aging.102166
[2]. Ashapkin, V. V., Kutueva, L. I., Kurchashova, S. Y., &
Kireev, I. I. (2019). Are there common mechanisms
between the Hutchinson–Gilford Progeria Syndrome and
natural aging? Frontiers in Genetics, 10, 455. https://doi.
org/10.3389/fgene.2019.00455
[3]. Bekaert, S., De Meyer, T., & Van Oostveldt, P. (2005).
Telomere attrition as ageing biomarker. Anticancer
Research, 25(4), 3011-3021.
[4]. Brasil, S., Pascoal, C., Francisco, R., dos Reis Ferreira,
V., Videira, P. A., & Valadão, G. (2019). Artificial intelligence
(AI) in rare diseases: Is the future brighter? Genes, 10(12),
978-1001. https://doi.org/10.3390/genes10120978
[5]. Brehme, M., Voisine, C., Rolland, T., Wachi, S., Soper, J.
H., Zhu, Y., ..., & Morimoto, R. I. (2014). A chaperome
subnetwork safeguards proteostasis in aging and
neurodegenerative disease. Cell Reports, 9(3), 1135-1150.
https://doi.org/10.1016/j.celrep.2014.09.042
[6]. Campbell, J. M., Mahbub, S., Habibalahi, A., Paton, S.,
Gronthos, S., & Goldys, E. (2020). Ageing human bone
marrow mesenchymal stem cells have depleted NAD (P) H
and distinct multispectral autofluorescence. GeroScience,
5(3), 1-10. https://doi.org/10.1007/s11357-020-00250-9
[7]. Childs, B. G., Durik, M., Baker, D. J., & Van Deursen, J.
M. (2015). Cellular senescence in aging and age-related
disease: From mechanisms to therapy. Nature Medicine,
21(12), 1424-1435. https://doi.org/10.1038/nm.4000
[8]. de Lucia, C., Murphy, T., Steves, C. J., Dobson, R. J.,
Proitsi, P., & Thuret, S. (2020). Lifestyle mediates the role of
nutrient-sensing pathways in cognitive aging: Cellular and
epidemiological evidence. Communications Biology,
3(1), 1-17. https://doi.org/10.1038/s42003-020-0844-1
[9]. Fabris, F., De Magalhães, J. P., & Freitas, A. A. (2017). A
review of supervised machine learning applied to ageing
research. Biogerontology, 18(2), 171-188. https://doi.org/
10.1007/s10522-017-9683-y
[10]. Fleischer, J. G., Schulte, R., Tsai, H. H., Tyagi, S., Ibarra,
A., Shokhirev, M. N., ..., & Navlakha, S. (2018). Predicting
age from the transcriptome of human dermal fibroblasts.
Genome Biology, 19(1), 1-8. https://doi.org/10.1186/s1305
9-018-1599-6
[11]. Garitaonandia, I., Amir, H., Boscolo, F. S., Wambua, G.
K., Schultheisz, H. L., Sabatini, K., ..., & Laurent, L. C. (2015).
Increased risk of genetic and epigenetic instability in
human embryonic stem cells associated with specific
culture conditions. PloS One, 10(2). https://doi.org/10.1371/
journal.pone.011830
[12]. Gialluisi, A., Di Castelnuovo, A., Donati, M. B., De
Gaetano, G., Iacoviello, L., & Moli-sani Study
Investigators. (2019). Machine learning approaches for
the estimation of biological aging: The road ahead for
population studies. Frontiers in Medicine, 6, 146-153.
https://doi.org/10.3389/fmed.2019.00146
[13]. Holder, L. B., Haque, M. M., & Skinner, M. K. (2017).
Machine learning for epigenetics and future medical
applications. Epigenetics, 12(7), 505-514. https://doi.org/
10.1080/15592294.2017.1329068
[14]. Jin, B., Li, Y., & Robertson, K. D. (2011). DNA
methylation: Superior or subordinate in the epigenetic
hierarchy? Genes & Cancer, 2(6), 607-617. https://doi.org/
10.1177%2F1947601910393957
[15]. Jónsson, B. A., Bjornsdottir, G., Thorgeirsson, T. E.,
Ellingsen, L. M., Walters, G. B., Gudbjartsson, D. F., ..., &
Ulfarsson, M. O. (2019). Brain age prediction using deep learning uncovers associated sequence variants. Nature
Communications, 10(1), 1-10. https://doi.org/10.1038/s4
1467-019-13163-9
[16]. Naue, J., Hoefsloot, H. C., Mook, O. R., Rijlaarsdam-
Hoekstra, L., van der Zwalm, M. C., Henneman, P., ..., &
Verschure, P. J. (2017). Chronological age prediction
based on DNA methylation: Massive parallel sequencing
and random forest regression. Forensic Science
International: Genetics, 31, 19-28. https://doi.org/10.1016
/j.fsigen.2017.07.015
[17]. Pyrkov, T. V., Slipensky, K., Barg, M., Kondrashin, A.,
Zhurov, B., Zenin, A., ..., & Fedichev, P. O. (2018). Extracting
biological age from biomedical data via deep learning:
Too much of a good thing? Scientific Reports, 8(1), 1-11.
https://doi.org/10.1038/s41598-018-23534-9
[18]. Rahman, S. A. (2019). Quantifying human biological
age: A machine learning approach. [Doctoral
dissertation]. West Virginia University, Morgantown, WV.
[19]. Rebelo-Marques, A., De Sousa Lages, A., Andrade,
R., Ribeiro, C. F., Mota-Pinto, A., Carrilho, F., & Espregueira-
Mendes, J. (2018). Aging hallmarks: The benefits of
physical exercise. Frontiers in Endocrinology, 9, 258. https://
doi.org/10.3389/fendo.2018.00258
[20]. Scheibye-Knudsen, M., Scheibye-Alsing, K.,
Canugovi, C., Croteau, D. L., & Bohr, V. A. (2013). A novel
diagnostic tool reveals mitochondrial pathology in human
diseases and aging. Aging, 5(3), 192-208. https://doi.org/
10.18632/aging.100546
[21]. Schulz, R., Wahl, H. W., Matthews, J. T., De Vito Dabbs,
A., Beach, S. R., & Czaja, S. J. (2015). Advancing the aging
and technology agenda in gerontology. The Gerontologist,
55(5), 724-734. https://doi.org/10.1093/geront/gnu071
[22]. Tang, W., Chen, J., & Hong, H. (2021). Development
of classification models for predicting inhibition of
mitochondrial fusion and fission using machine learning
methods. Chemosphere, 273, 128567. https://doi.org/10.
1016/j.chemosphere.2020.128567
[23]. Tchkonia, T., & Kirkland, J. L. (2018). Aging, cell
senescence, and chronic disease: Emerging therapeutic
strategies. Journal of American Medical Association, 320(13),
1319-1320. https://doi.org/10.1001/jama.2018.12440
[24]. Trovato-Salinaro, A., Trovato-Salinaro, E., Failla, M.,
Mastruzzo, C., Tomaselli, V., Gili, E., ..., & Vancheri, C.
(2006). Altered intercellular communication in lung
fibroblast cultures from patients with idiopathic pulmonary
fibrosis. Respiratory Research, 7(1), 1-9. https://doi.org/10.
1186/1465-9921-7-122
[25]. Viñuela, A., Brown, A. A., Buil, A., Tsai, P. C., Davies, M.
N., Bell, J. T., ..., & Small, K. S. (2018). Age-dependent
changes in mean and variance of gene expression across
tissues in a twin cohort. Human Molecular Genetics, 27(4),
732-741. https://doi.org/10.1093/hmg/ddx424
[26]. Wood, T. R., Kelly, C., Roberts, M., & Walsh, B. (2019).
An interpretable machine learning model of biological
age. Research, 8(17), 17-23. https://doi.org/10.12688/f10
00research.17555.1
[27]. Zhavoronkov, A., Mamoshina, P., Vanhaelen, Q.,
Scheibye-Knudsen, M., Moskalev, A., & Aliper, A. (2019).
Artificial intelligence for aging and longevity research:
Recent advances and perspectives. Ageing Research
Reviews, 49, 49-66. https://doi.org/10.1016/j.arr.2018.11.003
[28]. Zouboulis, C. C., & Makrantonaki, E. (2019). Clinical
and laboratory skin biomarkers of organ-specific diseases.
Mechanisms of Ageing and Development, 177, 144-149.
https://doi.org/10.1016/j.mad.2018.08.003