References
[1]. Percival, D.B., & Walden, A.T., (1993). Spectral Analysis
for Physical Applications: Multitaper and Conventional
Univariate Techniques. Cambridge University Press,
Cambridge.
[2]. Schuster, A. (1898). On the investigation of hidden
Periodicities. Terrestrial Magnetism, Vol. 3, pp. 13–41.
[3]. Brillinger, D. (1975). Time series: data analysis and
theory. Rinehart and Winston, London.
[4]. Stoica, P., & Moses, R. (1997). Introduction to spectral
analysis. Prentice-Hall, Upper Saddle River (N.J.).
[5]. Welch, P. (1967). The use of fast fourier transform for the
estimation of power spectra: A method based on time
averaging over short, modified periodograms. IEEE
Transactions on Audio and Electroacoustics, vol. 15, no. 2,
pp. 70–73.
[6]. Broersen, P. (2006). Automatic Autocorrelation and
Spectral Analysis. Berlin, Germany: Springer.
[7]. Box, G., & Jenkins, G. (1970). Time Series Analysis:
Forecasting and Control. San Francisco, CA: Holden-Day.
[8]. Barbé, K., Schoukens, J., & Pintelon, R. (2008). Nonparametric
Power spectrum estimation with circular
2 overlap. IEEE I MTC, Victoria, pp. 336-341.
[9]. Barbé, K., Schoukens, J., & Pintelon, R. (2010). Welch
method Revisited: Nonparametric Power Spectrum
Estimation via Circular Overlap. IEEE Trans. Signal
Processing. vol. 58, no. 2, pp. 553-565.
[10]. Porat, B. (1994). Digital Processing of Random
Signals: Theory and Methods. Upper Saddle River, NJ:
Prentice-Hall.
[11]. Harris, F.J. (1978). On the use of windows for
harmonic analysis with the discrete Fourier transform.
Proc. IEEE, vol. 66, no. 1, pp. 51–83.
[12]. Thompson, D.J. (1982). Spectrum estimation and
harmonic analysis. Proc. IEEE, vol. 70, no. 9,
pp.1055–1096.
[13]. Bronez, T.P. (1992). On the performance advantage
of multitaper Spectral analysis. IEEE Trans. Signal Process.,
vol. 40, no.12, pp. 2941–2946.
[14]. H. Jokinen, H., Ollila, J., & Aumala, O. (2000). On
windowing effects in estimating averaged periodograms
of noisy signals. Measurement, vol. 28, no. 3, pp.
197–207.
[15]. Proakis, John, G., &. Manolakis, G. (1996). Digital
signal processing: principles, algorithms, and applications.
Prentice-Hall, Upper Saddle River (N.J.), 3rd edition.
[16]. Papoulis, A. (1965). Probability, Random Variables,
and Stochastic Processes. New York: McGraw-Hill.