Selection of Optimum Design among Different Vane Designs by Weighted Average Method

Nandan Seshadri*, Pramod S. N.**, Sai Vidhat D.***, Shashank P.****, Kiran Kumar P.*****
*-***** Department of Mechanical Engineering, S J B Institute of Technology, Bangalore, Karnataka, India.
Periodicity:February - April'2021
DOI : https://doi.org/10.26634/jme.11.2.17963

Abstract

The aim is to study the various types of vanes and to optimize the design of the existing vanes to provide efficiency in the best possible way. Weighted average method has been used to determine the most efficient blade analytically, considering various factors such as head, kinetic energy conserved, efficiency, power, running cost, space and volumes and capital cost. These findings from the study revealed that the spiral type turbine has been more efficient than the others. Vanes of spiral, Kaplan and Pelton turbines have been taken into consideration. Weighted Average Method (WAM) is an optimization technique used to compare the various entities and displays a way to show how the required entity is better than the rest of the entities as per requirements. In this paper, WAM method is used to show how spiral vanes are better than Kaplan and Pelton vanes for low energy consumptions. The ranking obtained from the WAM shows that spiral vanes can perform better than Kaplan and Pelton vanes as per the requirements of low - head, capital cost, running cost, high – efficiency, KE conserved, volume of discharge, power for small scale energy generation.

Keywords

Turbine, Vanes, Pelton, Kaplan, Spiral Vanes, Weighted Average Method.

How to Cite this Article?

Seshadri, N., Pramod, S. N., Vidhat, D. S., Shashank, P., and Kumar, P. K. (2021). Selection of Optimum Design among Different Vane Designs by Weighted Average Method. i-manager's Journal on Mechanical Engineering, 11(2), 27-35. https://doi.org/10.26634/jme.11.2.17963

References

[1]. Bacci, T., Gamannossi, A., Mazzei, L., Picchi, A., Winchler, L., Carcasci, C., ... & Vagnoli, S. (2017). Experimental and CFD analyses of a highly-loaded gas turbine blade. Energy Procedia, 126, 770-777. https://doi. org/10.1016/j.egypro.2017.08.253
[2]. Benichou, E., Dufour, G., Bousquet, Y., Binder, N., Ortolan, A., & Carbonneau, X. (2019). Body force modeling of the aerodynamics of a low-speed fan under distorted inflow. International Journal of Turbomachinery, Propulsion and Power, 4(3), 29-44. https://doi.org/10.3390/ ijtpp4030029
[3]. Bianchi, G., Fatigati, F., Murgia, S., & Cipollone, R. (2017). Design and analysis of a sliding vane pump for waste heat to power conversion systems using organic fluids. Applied Thermal Engineering, 124, 1038-1048. https://doi.org/10.1016/j.applthermaleng.2017.06.083
[4]. Brekke, H. (2001). Hydraulic turbines design, erection and operation. Norwegian University of Science and Technology (NTNU) Publications.
[5]. Cox, K., & Echtermeyer, A. (2012). Structural design and analysis of a 10MW wind turbine blade. Energy Procedia, 24, 194-201. https://doi.org/10.1016/j.egypro.2012.06.101
[6]. Dieter, G. E., & Schmidt, L. C. (2009). Engineering Design (pp. 18-20). Boston: McGraw-Hill Higher Education.
[7]. Frosina, E. (2015). A three dimensional CFD modeling methodology applied to improve hydraulic components performance. Energy Procedia, 82, 950-956.
[8]. Giovannini, M., Rubechini, F., Marconcini, M., Arnone, A., & Bertini, F. (2019). Reducing secondary flow losses in low-pressure turbines: The “Snaked” blade. International Journal of Turbomachinery, Propulsion and Power, 4(3), 1- 18. https://doi.org/10.3390/ijtpp4030028
[9]. Jiang, D., Luo, H., & Zhang, X. (2015). Numerical study of the leakage flow on a novel turbine blade tip. Procedia Engineering, 99, 413-422. https://doi.org/10.1016/j.proen g.2014.12.555
[10]. Kadhim, M. J., Al-Bassam, M. A., & Abdas, S. H. (2011). Materials selection in conceptual design using weighting property method. Engineering & Technology Journal, 29(1), 82-95.
[11]. Kiran, K., Kumar, K. P., & Madhusudhan, T. (2016). Selection of structural and insulation material for infrared heating system by weighted property method. International Research Journal of Engineering and Technology (IRJET), 3(4), 1777-1782.
[12]. Lim, Y. C., Chong, W. T., & Hsiao, F. B. (2013). Performance investigation and optimization of a vertical axis wind turbine with the omni-direction-guide-vane. Procedia Engineering, 67, 59-69. https://doi.org/10.1016/j. proeng.2013.12.005
[13]. Monatrakul, W., & Suntivarakorn, R. (2017). Effect of blade angle on turbine efficiency of a spiral horizontal axis hydro turbine. Energy Procedia, 138, 811-816. https://doi. org/10.1016/j.egypro.2017.10.075
[14]. Poh, S. C., Sim, S. Y., Chong, W. T., Fazlizan, A., Yip, S. Y., Hew, W. P., ... & Zain, Z. M. (2014). Computational fluid dynamics simulation of the effect of guide-vane angles on the performance of the exhaust air energy recovery turbine generator. Energy Procedia, 61, 1286-1289. https://doi.org /10.1016/j.egypro.2014.11.1082
[15]. Sandeep, D. V., Ullas, U., Kiran, G. K. T., Valleesh, B. V., & Kumar, P. K. (2017). Selection of insulation material for solar food grain disinfection system by weighted property method. i-manager's Journal on Material Science, 5(1), 9- 13. https://doi.org/10.26634/jms.5.1.13481
[16]. Shahidul, M. I., Tarmizi, S. S., Yassin, A., Zen, H., Hung, T. C., & Djun, L. M. (2015). Modeling the energy extraction from in-stream water by multi stage blade system of cross flow micro hydro turbine. Procedia Engineering, 105, 488-494. https://doi.org/10.1016/j.proeng.2015.05.081
[17]. Shigemitsu, T., Fukutomi, J., Wada, T., & Shinohara, H. (2013). Performance analysis of mini centrifugal pump with splitter blades. Journal of Thermal Science, 22(6), 573-579. https://doi.org/10.1007/s11630-013-0664-4
[18]. Šimunović, K., Galović, M., Šimunović, G., & Svalina, I. (2009). Applying of AHP methodology and weighted properties method to the selection of optimum alternative of stock material. Acta Technica Corviniensis, Bulletin of Engineering, 66, 65-70.
[19]. Suresh, T., Kiran, K. P., & Madhusudhan, T. (2015). Selection of material by weighted property method for Savonius Vertical Axis Wind Turbine Rotor Blade. International Research Journal of Engineering and Technology (IRJET), 2(1), 66-72.
[20]. Zhu, F. W., Ding, L., Huang, B., Bao, M., & Liu, J. T. (2020). Blade design and optimization of a horizontal axis tidal turbine. Ocean Engineering, 195, 1-10. https://doi.org /10.1016/j.oceaneng.2019.106652
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.