References
[1]. Alhazmi, S. E. A. (2015). Numerical solution of Fisher's equation using finite difference. Bulletin of Mathematical
Sciences,12, 27–34. https://doi.org/10.18052/www.scipress.com/BMSA.12.27
[2]. Al-Khaled, K. (2001). Numerical study of Fisher's reaction–diffusion equation by the Sinc collocation method. Journal of
Computational and Applied Mathematics, 137(2), 245-255. https://doi.org/10.1016/S0377-0427(01)00356-9
[3]. Arora, G., & Joshi, V. (2018). A computational approach for solution of one dimensional parabolic partial differential
equation with application in biological processes. Ain Shams Engineering Journal, 9(4), 1141-1150. https://doi.org/
10.1016/j.asej.2016.06.013
[4]. Arora, G., & Singh, B. K. (2013). Numerical solution of Burgers' equation with modified cubic B-spline differential
quadrature method. Applied Mathematics and Computation, 224, 166-177. https://doi.org/10.1016/j.amc.2013.08.071
[5]. Bastani, M., & Salkuyeh, D. K. (2012). A highly accurate method to solve Fisher's equation. Pramana, 78(3), 335-346.
https://doi.org/10.1007/s12043-011-0243-8
[6]. Chandraker, V., Awasthi, A., & Jayaraj, S. (2015). A numerical treatment of Fisher equation. Procedia Engineering, 127,
1256-1262. https://doi.org/10.1016/j.proeng.2015.11.481
[7]. Dag, I., & Ersoy, O. (2016). The exponential cubic B-spline algorithm for Fisher equation. Chaos, Solitons & Fractals, 86,
101-106. https://doi.org/10.1016/j.chaos.2016.02.031
[8]. Dağ, İ., Şahin, A., & Korkmaz, A. (2010). Numerical investigation of the solution of Fisher's equation via the B-spline
Galerkin method. Numerical Methods for Partial Differential Equations, 26(6), 1483-1503. https://doi.org/10.10
02/num.20507
[9]. Fisher, R. A. (1937). The wave of advance of advantageous genes. Annals of Human Genetics, 7(4), 355-369.
https://doi.org/10.1111/j.1469-1809.1937.tb02153.x
[10]. Grindrod, P. (1996). The theory and applications of reaction-diffusion equations: Patterns and Waves. Clarendon Press.
[11]. Mittal, R. C., & Jain, R. K. (2013). Numerical solutions of nonlinear Fisher's reaction–diffusion equation with modified
cubic B-spline collocation method. Mathematical Sciences, 7(1), 1-10. https://doi.org/10.1186/2251-7456-7-12
[12]. Mohyuddin, M. R., & Rizwan, S. M. (2015). Similarity having perturbation in Newtonian fluid. i-manager's Journal on
Mathematics, 4(4), 22-27. https://doi.org/10.26634/jmat.4.4.3697
[13]. Mohyuddin, M. R., Hayat, T., Mahomed, F. M., Asghar, S., & Siddiqui, A. M. (2004). On solutions of some non-linear
differential equations arising in Newtonian and non-Newtonian fluids. Nonlinear Dynamics, 35(3), 229-248. https://doi.or
g/10.1023/B:NODY.0000027920.92871.99
[14]. Murray, J.D. (2003). Mathematical Biology, Springer-Verlag, Berlin.
[15]. Sahin, A., & Ozmen, O. (2014). Usage of higher order B-splines in numerical solution of Fisher's equation. International
Journal of Nonlinear Science, 17(3), 241-253.
[16]. Shu, C. (2000). Differential Quadrature and its Application in Engineering, NY: Springer.
[17]. Shukla, H. S., & Tamsir, M. (2016). Extended modified cubic B-spline algorithm for nonlinear Fisher's reaction-diffusion
equation. Alexandria Engineering Journal, 55(3), 2871-2879. https://doi.org/10.1016/j.aej.2016.06.031
[18]. Tamsir, M., Srivastava, V. K., & Jiwari, R. (2016). An algorithm based on exponential modified cubic B-spline differential
quadrature method for nonlinear Burgers' equation. Applied Mathematics and Computation, 290, 111-124. https://doi.
org/10.1016/j.amc.2016.05.048
[19]. Zhao, S., & Wei, G. W. (2003). Comparison of the discrete singular convolution and three other numerical schemes for solving Fisher's equation. SIAM Journal on Scientific Computing, 25(1), 127-147. https://doi.org/10.1137/S10648275013
90972