1 and K2 have been derived for dilute OH-impurity in KCl, KBr and KI lattices. These values are derived using an ab initio calculations using point charge point dipole model, which appears to be suited for the present systems. The obtained values are close to what is observed generally for such systems. The results explains the the energy orientational configuration direction for each system. The value of potential parameters K1 and K2 also describes the energy eigen values for the rotor

">

Rotational Barrier of Diatomic Polar Impurities in Potassium Chloride Crystal Structure

Farag G. Elmzughi *, Mohamed Mansor **
*-** Faculty of Science, Physics Department, University of Tripoli, Tripoli, Libya.
Periodicity:January - March'2021
DOI : https://doi.org/10.26634/jms.8.4.17889

Abstract

Expressions for the rotational barrier height parameters K1 and K2 have been derived for dilute OH-impurity in KCl, KBr and KI lattices. These values are derived using an ab initio calculations using point charge point dipole model, which appears to be suited for the present systems. The obtained values are close to what is observed generally for such systems. The results explains the the energy orientational configuration direction for each system. The value of potential parameters K1 and K2 also describes the energy eigen values for the rotor

Keywords

Polar Impurities, Rotational Barrier, Potential Energy, Eigen Value, Dipole Model.

How to Cite this Article?

Elmzughi, F. G., and Mansor, M. (2021). Rotational Barrier of Diatomic Polar Impurities in Potassium Chloride Crystal Structure. i-manager's Journal on Material Science, 8(4), 11-19. https://doi.org/10.26634/jms.8.4.17889

References

[1]. Ahtee, M., & Hewat, A. W. (1978). Structural phase transitions in sodium-potassium niobate solid solutions by neutron powder diffraction. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 34(2), 309-317. https://doi.org/10.1107/S0 56773947800056X
[2]. Baker, D. W., Thomas, P. A., Zhang, N., & Glazer, A. M. (2009). A comprehensive study of the phase diagram of KxNa −xNbO . Applied Physics Letters, 95(9). https://doi.org 1 3 /10.1063/1.3212861
[3]. Beyeler, H. U. (1972). The hindered rotation in various fields of cubic symmetry. Physica Status Solidi (B), 52(2), 419-425. https://doi.org/10.1002/pssb.2220520210
[4]. Bridges, F. (1973). Low energy excited states in paraelectric resonance of KI: OH. Solid State Communications, 13(11), 1877-1881. https://doi.org/10.1016/0038-1098(73) 90749-7
[5]. Devonshire, A. F. (1936). The rotation of molecules in fields of octahedral symmetry. Proceedings of the Royal Society of London: Series A-Mathematical and Physical Sciences, 153(880), 601-621. https://doi.org/10.1098/rspa. 1936.0026
[6]. Dewaele, A., Belonoshko, A. B., Garbarino, G., Occelli, F., Bouvier, P., Hanfland, M., & Mezouar, M. (2012). Highpressure– high-temperature equation of state of KCl and KBr. Physical Review B, 85(21). https://doi.org/10.1103/Phys RevB.85.214105
[7]. Dreyfus, R. W. (1968). Tunneling states of CN− ions in RbCl crystals. Journal of Physics and Chemistry of Solids, 29(11), 1941-1958. https://doi.org/10.1016/0022-3697(68) 90045-0
[8]. Egerton, L., & Dillon, D. M. (1959). Piezoelectric and dielectric properties of ceramics in the system potassium—sodium niobate. Journal of the American Ceramic Society, 42(9), 438-442. https://doi.org/10.1111/j. 1151-2916.1959.tb12971.x
[9]. Elmzughi, F. G. (1988). Potential barrier hindering rotational motion of polar impurities in solids (Postgraduate Thesis). University of Tripoli, Libya.
[10]. Gupta, S., Huband, S., Keeble, D. S., Walker, D., Thomas, P., Viehland, D., & Priya, S. (2013). Optical crystallographic study of piezoelectric K Na NbO (x= 0.4, x 1−x 3 0.5 and 0.6) single crystals using linear birefringence. CrystEngComm, 15(34), 6790-6799. https://doi.org/10.1 039/C3CE40627J
[11]. Lawless, W. N. (1967). The rotational barrier (k) for diatomic impurities in alkali halides: OH− in KCl, KBr, RbCl and NaCl. Journal of Physics and Chemistry of Solids, 28(9), 1755-1761. https://doi.org/10.1016/0022-3697 (67)90151-5
[12]. Li, J. F., Wang, K., Zhu, F. Y., Cheng, L. Q., & Yao, F. Z. (2013). (K,Na)NbO -based lead-free piezoceramics: 3 Fundamental aspects, processing technologies, and remaining challenges. Journal of the American Ceramic Society, 96(12), 3677-3696. https://doi.org/10.1111/jace.1 2715
[13]. Mitra, D., Agrawal, V. K., & Pandey, G. K. (1970). Possibility of <110> equilibrium orientation in octahedral potential. Solid State Communications, 8(20). https://doi. org/10.1016/0038-1098(70)90482-5
[14]. Narayanamurti, V., & Pohl, R. O. (1970). Tunneling states of defects in solids. Reviews of Modern Physics, 42(2). https://doi.org/10.1103/RevModPhys.42.201
[15]. Pandey, G. K., Pandey, K. L., Massey, M., & Kumar, R. (1986). Possibility of the simultaneous occurrence of potential minima along two crystallographic directions in an octahedral potential. Physical Review B, 34(2). https:// doi.org/10.1103/PhysRevB.34.1277
[16]. Rödel, J., Webber, K. G., Dittmer, R., Jo, W., Kimura, M., & Damjanovic, D. (2015). Transferring lead-free piezoelectric ceramics into application. Journal of the European Ceramic Society, 35(6), 1659-1681. https://doi. org/10.1016/j.jeurceramsoc.2014.12.013
[17]. Rollefson, R. J. (1973). Potential of F− in NaBr: A reply. Physical Review B, 7(8), 4006. https://doi.org/10.1103/Phys RevB.7.4006
[18]. Shannon, R. D. (1976). Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 32(5), 751-767. https://doi.org/10.1107/S 0567739476001551
[19]. Zhang, B. P., Li, J. F., Wang, K., & Zhang, H. (2006). Compositional dependence of piezoelectric properties in Na K NbO lead-free ceramics prepared by spark plasma x 1−x 3 sintering. Journal of the American Ceramic Society, 89(5), 1605-1609. https://doi.org/10.1111/j.1551-2916.2006.009 60.x
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.