ω-Filters of Commutative Be-Algebras

V. Venkata Kumar *, M. Sambasiva Rao **, S. Kalesha Vali ***
* Department of Mathematics, Aditya Engineering College, Surampalem, Andhra Pradesh, India.
** Department of Mathematics, MVGR College of Engineering, Vizianagaram, Andhra Pradesh, India.
*** Department of Mathematics, JNTUK University College of Engineering, Vizianagaram, Andhra Pradesh, India.
Periodicity:July - December'2020
DOI : https://doi.org/10.26634/jmat.9.2.17868

Abstract

The notion of -filters is introduced on the lines of a dual annihilator of commutative BE-algebras. An equivalent condition is given for a proper ω-filter of a commutative BE-algebra to become a prime filter. A characterization theorem of ω-filters is established which in turn establishes some of equivalent conditions for a prime filter of a commutative BE-algebra to become an ω-filter. It is proved that every ω-filter is an intersection of all minimal prime filters.

Keywords

Commutative BE-Algebra, Dual Annihilator, V-Closed Subset, Minimal Prime Filter, w -Filter.

How to Cite this Article?

Kumar, V. V., Rao, M. S., and Vali, S. K. (2020). ω-Filters of Commutative Be-Algebras. i-manager's Journal on Mathematics, 9(2), 30-39. https://doi.org/10.26634/jmat.9.2.17868

References

[1]. Ahn, S. S., Kim, Y. H., & Ko, J. M. (2012). Filters in commutative BE-algebras. Communications of the Korean Mathematical Society, 27(2), 233-242.
[2]. Iseki, K., & Tanaka, S. (1979). An introduction to the theory of BCK-algebras. Mathematica Japonica, 23(1), 1-26.
[3]. Kim, H. S., & Kim, Y. H. (2007). On BE-algebras. Scientiae Mathematicae Japonicae, 66(1), 113-116.
[4]. Kumar, V. V., & Rao, M. S. (2017). Dual annihilator filters of commutative BE-algebras. Asian-European Journal of Mathematics, 10(01), 1-11. https://doi.org/10.1142/S1793557117500139
[5]. Meng, B. L. (2010). On filters in BE-algebras. Scientiae Mathematicae Japonicae, 71(2), 201-207.
[6]. Meng, J. (1996). BCK-filters. Mathematica Japonica, 44(1), 119-129.
[7]. Meng, J., Jun, Y. B., & Xin, X. L. (1998). Prime ideal in commutative BCK-algebras. Discussiones Mathematicae Algebra and Stochastic Methods, 18 (1), 5-15.
[8]. Rao, M. S. (2015). Prime filters of commutative BE-algebras. Journal of Applied Mathematics & Informatics, 33(5-6), 579- 591.
[9]. Rasouli, S. (2018). Generalized co-annihilators in residuated lattices. Annals of the University of Craiova-Mathematics and Computer Science Series, 45(2), 190-207.
[10]. Rasouli, S., & Kondo, M. (2020). n-Normal residuated lattices. Soft Computing, 24(1), 247-258.
[11]. Walendziak, A. (2008). On commutative BE-algebras. Scientiae Mathematicae Japonicae Online, 69(2), 585-588.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.