On Fuzzy n-Normed Spaces Lacunary Statistical Convergence of Order α

Nazmiye Gonul Bilgin*, Gurel Bozma**
*-** Department of Mathematics, Zonguldak Bulent Ecevit University, Zonguldak, Turkey.
Periodicity:July - December'2020
DOI : https://doi.org/10.26634/jmat.9.2.17841

Abstract

Lacunary statistically convergent sequences of order α on fuzzy n-normed spaces have been defined and very important consequences will be investigated in this space. Here, we will generalize the ideas on lacunary statistical convergence in fuzzy normed linear spaces and and we establish some relations between lacunary statistically convergent and lacunary statistical summability of order α.

Keywords

Fuzzy n-Normed Spaces, Lacunary Sequence, Statistical Convergence.

How to Cite this Article?

Bilgin, N. G., and Bozma, G. (2020). On Fuzzy n-Normed Spaces Lacunary Statistical Convergence of Order α. i-manager's Journal on Mathematics, 9(2), 1-7. https://doi.org/10.26634/jmat.9.2.17841

References

[1]. Aytar, S., & Pehlivan, S. (2008). Statistical convergence of sequences of fuzzy numbers and sequence of a−cuts. International Journal of General Systems, 37(2), 231-237.
[2]. Colak, R. (2010). Statistical Convergence of Order: Modern Methods in Analysis & its Applications. New Delhi, India: Anamaya Publications.
[3]. Ercan, S., Altin, Y., & Bektaş, Ç. A. (2020). On lacunary weak statistical convergence of order a. Communications in Statistics-Theory and Methods, 49(7), 1653-1664.
[4]. Fast, H. (1951). Sur la convergence statistique. Colloquium Mathematicae, 2(3-4), 241-244.
[5]. Felbin, C. (1992). Finite dimensional fuzzy normed linear space. Fuzzy Sets and Systems, 48(2), 239-248.
[6]. Fridy, J. A., & Orhan, C. (1993). Lacunary statistical convergence. Pacific Journal of Mathematics, 160(1), 43-51.
[7]. Gadjiev, A. D., & Orhan, C. (2002). Some approximation theorems via statistical convergence. The Rocky Mountain Journal of Mathematics, 129-138.
[8]. Kaleva, O., & Seikkala, S. (1984). On fuzzy metric spaces. Fuzzy Sets and Systems, 12(3), 215-229.
[9]. Katsaras, A. K. (1984). Fuzzy topological vector spaces II. Fuzzy Sets and Systems, 12(2), 143-154.
[10]. Et, M., & Şengül, H. (2015). On point wise lacunary statistical convergence of order a of sequences of function. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 85(2), 253-258.
[11]. Mohiuddine, S. A., & Lohani, Q. D. (2009). On generalized statistical convergence in intuitionistic fuzzy normed space. Chaos, Solitons & Fractals, 42(3), 1731-1737.
[12]. Narayanan, A., & Vijayabalaji, S. (2005). Fuzzy n-normed linear space. International Journal of Mathematics and Mathematical Sciences, 2005(24), 3963-3977.
[13]. Niven, I. (1951). The asymptotic density of sequences. Bulletin of the American Mathematical Society, 57(6), 420-434.
[14]. Puri, M. L. & Ralescu, D. A. (1983). Differentials of fuzzy functions. Journal of Mathematical Analysis & Applications, 91, 552-558.
[15]. Reddy, B. S. (2010). Statistical convergence in n-normed spaces. International Mathematical Forum, 5(21-24), 1185- 1193.
[16]. Reddy, B. S., & Srinivas, M. (2015). Statistical convergence in fuzzy $ n $-normed spaces. International Journal of Pure and Applied Mathematics, 104(1), 29-42.
[17]. Sen, M., & Debnath, P. (2011). Lacunary statistical convergence in intuitionistic fuzzy n-normed linear spaces. Mathematical and Computer Modeling, 54(11-12), 2978-2985.
[18]. Sencimen, C., & Pehlivan, S. (2008). Statistical convergence in fuzzy normed linear spaces. Fuzzy Sets & Systems,159(3), 361–370.
[19]. Şengül, H., & Et, M. (2014). On lacunary statistical convergence of order a. Acta Mathematica Scientia, 34(2), 473- 482.
[20]. Turkmen, M. R. & Cinar, M. (2017). Lacunary statistical convergence in fuzzy normed linear spaces. Applied & Computational Mathematics, 6(5), 233–237.
[21]. Turkmen, M. R. (2018a). Lacunary statistical convergence in fuzzy n-normed spaces. In International Conference on Analysis and its Applications (ICAA-2018), (pp. 56-61).
[22]. Türkmen, M. R. (2018b). On lacunary statistical convergence and some properties in fuzzy n-normed spaces. i-manager's Journal on Mathematics, 7(3), 1-9. https://doi.org/10.26634/jmat.7.3.14868
[23]. Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338-353.
[24]. Zygmund, A. (1979). Trigono Metric Series. Cambridge, UK: Cambridge University Press.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.