References
[1]. Aytar, S., & Pehlivan, S. (2008). Statistical convergence of sequences of fuzzy numbers and sequence of a−cuts. International Journal of General Systems, 37(2), 231-237.
[2]. Colak, R. (2010). Statistical Convergence of Order: Modern Methods in Analysis & its Applications. New Delhi, India: Anamaya Publications.
[3]. Ercan, S., Altin, Y., & Bektaş, Ç. A. (2020). On lacunary weak statistical convergence of order a. Communications in Statistics-Theory and Methods, 49(7), 1653-1664.
[4]. Fast, H. (1951). Sur la convergence statistique. Colloquium Mathematicae, 2(3-4), 241-244.
[5]. Felbin, C. (1992). Finite dimensional fuzzy normed linear space. Fuzzy Sets and Systems, 48(2), 239-248.
[6]. Fridy, J. A., & Orhan, C. (1993). Lacunary statistical convergence. Pacific Journal of Mathematics, 160(1), 43-51.
[7]. Gadjiev, A. D., & Orhan, C. (2002). Some approximation theorems via statistical convergence. The Rocky Mountain Journal of Mathematics, 129-138.
[8]. Kaleva, O., & Seikkala, S. (1984). On fuzzy metric spaces. Fuzzy Sets and Systems, 12(3), 215-229.
[9]. Katsaras, A. K. (1984). Fuzzy topological vector spaces II. Fuzzy Sets and Systems, 12(2), 143-154.
[10]. Et, M., & Şengül, H. (2015). On point wise lacunary statistical convergence of order a of sequences of function. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 85(2), 253-258.
[11]. Mohiuddine, S. A., & Lohani, Q. D. (2009). On generalized statistical convergence in intuitionistic fuzzy normed space. Chaos, Solitons & Fractals, 42(3), 1731-1737.
[12]. Narayanan, A., & Vijayabalaji, S. (2005). Fuzzy n-normed linear space. International Journal of Mathematics and Mathematical Sciences, 2005(24), 3963-3977.
[13]. Niven, I. (1951). The asymptotic density of sequences. Bulletin of the American Mathematical Society, 57(6), 420-434.
[14]. Puri, M. L. & Ralescu, D. A. (1983). Differentials of fuzzy functions. Journal of Mathematical Analysis & Applications, 91, 552-558.
[15]. Reddy, B. S. (2010). Statistical convergence in n-normed spaces. International Mathematical Forum, 5(21-24), 1185- 1193.
[16]. Reddy, B. S., & Srinivas, M. (2015). Statistical convergence in fuzzy $ n $-normed spaces. International Journal of Pure and Applied Mathematics, 104(1), 29-42.
[17]. Sen, M., & Debnath, P. (2011). Lacunary statistical convergence in intuitionistic fuzzy n-normed linear spaces. Mathematical and Computer Modeling, 54(11-12), 2978-2985.
[18]. Sencimen, C., & Pehlivan, S. (2008). Statistical convergence in fuzzy normed linear spaces. Fuzzy Sets & Systems,159(3), 361–370.
[19]. Şengül, H., & Et, M. (2014). On lacunary statistical convergence of order a. Acta Mathematica Scientia, 34(2), 473- 482.
[20]. Turkmen, M. R. & Cinar, M. (2017). Lacunary statistical convergence in fuzzy normed linear spaces. Applied & Computational Mathematics, 6(5), 233–237.
[21]. Turkmen, M. R. (2018a). Lacunary statistical convergence in fuzzy n-normed spaces. In International Conference on Analysis and its Applications (ICAA-2018), (pp. 56-61).
[22]. Türkmen, M. R. (2018b). On lacunary statistical convergence and some properties in fuzzy n-normed spaces. i-manager's Journal on Mathematics, 7(3), 1-9. https://doi.org/10.26634/jmat.7.3.14868
[23]. Zadeh, L. A. (1965). Fuzzy Sets. Information and Control, 8(3), 338-353.
[24]. Zygmund, A. (1979). Trigono Metric Series. Cambridge, UK: Cambridge University Press.