Semi Maximal Ideals of Be-Algebras

M. Bala Prabhakar *, S. Kalesha Vali **, M. Sambasiva Rao ***
* Department of Mathematics, Aditya Engineering College (A), Surampalem, Kakinada, Andhra Pradesh, India.
** Department of Mathematics, JNTUK University College of Engineering, Vizianagaram, Andhra Pradesh, India.
*** Department of Mathematics, MVGR College of Engineering (A), Chintalavalasa, Vizianagaram, Andhra Pradesh, India.
Periodicity:July - December'2020
DOI : https://doi.org/10.26634/jmat.9.2.17835

Abstract

The concept of radicals of ideals is introduced in BE-algebras and certain properties of these radicals are derived in terms of direct products and homomorphisms. The notion of semi-maximal ideals is introduced in BE-algebras through the radical of ideals and their significant properties are investigated. Some equivalent conditions are derived for every semi-maximal ideal to become a maximal ideal.

Keywords

Transitive BE-Algebra, Self-Distributive BE-Algebra, Ideal, Maximal Ideal, Semi-Simple BE-Algebra, Semi-Maximal Ideal.

How to Cite this Article?

Prabhakar, M. B., Vali, S. K., and Rao, M. S. (2020). Semi Maximal Ideals of Be-Algebras. i-manager's Journal on Mathematics, 9(2), 18-29. https://doi.org/10.26634/jmat.9.2.17835

References

[1]. Ahn, S. S., Kim, Y. H., & Ko, J. M. (2012). Filters in commutative BE-algebras. Communications of the Korean Mathematical Society, 27(2), 233-242. https://doi.org/10.4134/CKMS.2012.27.2.233
[2]. Borzooei, R., Saeid, A. B., Ameri, R., & Rezaei, A. (2014). Involutory BE–algebras. Journal of Mathematics and Applications, 37, 13-26.
[3]. Çiloğlu, Z., & Çeven, Y. (2013). Commutative and bounded BE-algebras. Algebra, 2013, 1-5. https://doi.org/10.1 155/2013/473714
[4]. Deeba, E. Y. (1979). A characterization of complete BCK-algebras. Mathematics Seminar Notes, 7, 343-349.
[5]. Deeba, E. Y. (1980). Filter theory of BCK-algebras. Mathematica Japonica, 25, 631-639.
[6]. Iseki, K., & Tanaka, S. (1979). An introduction to the theory of BCK-algebras. Mathematica Japonica, 23(1),1-26.
[7]. Jun, Y. B., Hong, S. M., & Meng, J. (1998). Fuzzy BCK-filters. Mathematica Japonica, 47(1), 45-49.
[8]. Kim, H. S., & Kim, Y. H. (2006). On BE-algebras. Scientiae Mathematicae Japonicae, 66(1), 1299-1302. https://doi.org/10.32219/isms.66.1−13.
[9]. Meng, B. L. (2010). On filters in BE-algebras. Scientiae Mathematicae Japonicae, 71(2), 201-207.
[10]. Meng, J. (1996). BCK-filters. Mathematica Japonicae, 44(1), 119-129.
[11]. Paad, A. (2017). Radical of ideals in BL-algebras. Annals of Fuzzy Mathematics and Informatics, 14(3), 249-263.
[12]. Prabhakar, M. B., Vali, S. K., & Sambasiva Rao, M. (2019). Closed and dense elements of BE-algebras. Journal of the Chungcheong Mathematical Society, 32(1), 53-67. https://doi.org/10.14403/jcms.2019.32.1.53
[13]. Rao, M. S. (2015). Prime filters of commutative BE-algebras. Journal of Applied Mathematics & Informatics, 33(5), 579- 591. https://doi.org/10.14317/jami.2015.579
[14]. Sun, P. (2000). Homomorphism theorems on dual ideals in BCK-algebras. Soochow Journal of Mathematics, 26(3), 309- 316.
[15]. Walendziak, A. (2008). On commutative BE–algebras. Scientiae Mathematicae Japonicae, 69(2), 585-588.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Online 15 15

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.