References
[1]. Akshatha, K. R., Karunakar, A. K., Anitha, H., Raghavendra, U., & Shetty, D. (2016). Digital camera identification using PRNU: A feature based approach. Digital Investigation, 19, 67-79.
[2]. Balamurugan, B., Maghilnan, S., & Kumar, M. R. (2017, June). Source camera identification using spn with prnu estimation and enhancement. In 2017, International Conference on Intelligent Computing and Control (I2C2) (pp. 1-6). IEEE.
[3]. Bayram, S., Sencar, H., Memon, N., & Avcibas, I. (2005, September). Source camera identification based on CFA interpolation. In IEEE International Conference on Image Processing 2005 (Vol. 3, pp. III-69). IEEE.
[4]. Behare, M. S., Bhalchandra, A. S., & Kumar, R. (2019, June). Source camera identification using photo response rd noise uniformity. In 2019, 3 International conference on Electronics, Communication and Aerospace Technology (ICECA) (pp. 731-734). IEEE.
[5]. Borole, M., & Kolhe, S. R. (2019). An efficient camera identification technique using krawtchouk moment invariants. Journal of Mechanics of Continua and Mathematical Sciences, 14(1), 53-68.
[6]. Caldwell, S. (2014, September 1). Finding the skewed: Digital image forensics. [Blog]. The Photographicalist. Retrieved https://thephotographicalist.wordpress.com/ 2014/09/01/finding-the-skewed-digital-image-forensics/
[7]. Cheng, Y. (2020, April 16). Color filter array - CFA -- color filter mosaic – CFM [Blog]. Retrieved https://blog.csdn.net/ chengyq116/article/details/105567899
[8]. Chen, M., Fridrich, J., Goljan, M., & Lukás, J. (2008). Determining image origin and integrity using sensor noise. IEEE Transactions on Information Forensics and Security, 3(1), 74-90.
[9]. Choi, K. S., Lam, E. Y., & Wong, K. K. (2006). Source camera identification using footprints from lens aberration. Digital Photography II, 6069, 172-179.
[10]. Cozzolino, D., & Verdoliva, L. (2018). Noiseprint: A CNN-based camera model fingerprint. arXiv Preprint. Retrieved from https://arxiv.org/abs/1808.08396
[11]. DigitalCameraWorld. (2012). Turning light into a digital file. DigitalCameraWorld. Retrieved https://media.digital cameraworld.com/wp-content/uploads/sites/123/2012/ 08/Photography_cheat_sheet_digital_processing.jpg
[12]. Farid, H. (2006). Digital doctoring: How to tell the real from the fake. Significance, 3(4), 162-166.
[13]. Filler, T., Fridrich, J., & Goljan, M. (2008, October). Using sensor pattern noise for camera model identification. th In 2008, 15 IEEE International Conference on Image Processing (pp. 1296-1299). IEEE.
[14]. Fridrich, J. (1998, October). Image watermarking for tamper detection. In Proceedings 1998 International Conference on Image Processing ICIP98 (Vol. 2, pp. 404- 408). IEEE.
[15]. Geradts, Z. J., Bijhold, J., Kieft, M., Kurosawa, K., Kuroki, K., & Saitoh, N. (2001, February). Methods for identification of images acquired with digital cameras. In Enabling Technologies for Law Enforcement and Security (Vol. 4232, pp. 505-512). International Society for Optics and Photonics.
[16]. Goljan, M., & Fridrich, J. (2008, March). Camera identification from cropped and scaled images. In Security, Forensics, Steganography, and Watermarking of Multimedia Contents X (Vol. 6819, p. 68190E). International Society for Optics and Photonics.
[17]. Goljan, M., Fridrich, J., & Filler, T. (2009, February). Large scale test of sensor fingerprint camera identification. In Media Forensics and Security (Vol. 7254, p. 72540I). International Society for Optics and Photonics.
[18]. Gupta, B., & Tiwari, M. (2018a). Improving performance of source-camera identification by suppressing peaks and eliminating low-frequency defects of reference SPN. IEEE Signal Processing Letters, 25(9), 1340- 1343.
[19]. Gupta, B., & Tiwari, M. (2018b). Improving source camera identification performance using DCT based image frequency components dependent sensor pattern noise extraction method. Digital Investigation, 24, 121-127.
[20]. Kang, X., Li, Y., Qu, Z., & Huang, J. (2011). Enhancing source camera identification performance with a camera reference phase sensor pattern noise. IEEE Transactions on Information Forensics and Security, 7(2), 393-402.
[21]. Kharrazi, M., Sencar, H., & Memon, N. (2005, September). Blind source camera identification. In IEEE International Conference on Image Processing (pp. 69-72).
[22]. Lawgaly, A., Khelifi, F., & Bouridane, A. (2014, October). Weighted averaging-based sensor pattern noise estimation for source camera identification. In 2014, IEEE International Conference on Image Processing (ICIP) (pp. 5357-5361). IEEE.
[23]. Lekshmi, K., & Vaithiyanathan, V. (2018, August). Source camera identification of image for forensic analysis using sensor fingerprints. In 2018, Fourth International Conference on Computing Communication Control and Automation (ICCUBEA) (pp. 1-5). IEEE.
[24]. Li, C. T. (2010). Source camera identification using enhanced sensor pattern noise. IEEE Transactions on Information Forensics and Security, 5(2), 280-287.
[25]. Li, R., Guan, Y., & Li, C. T. (2014, July). PCA-based denoising of sensor pattern noise for source camera identification. In 2014, IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP) (pp. 436-440). IEEE.
[26]. Lin, X., & Li, C. T. (2016). Enhancing sensor pattern noise via filtering distortion removal. IEEE Signal Processing Letters, 23(3), 381-385.
[27]. Liu, B. B., Hu, Y., & Lee, H. K. (2010, September). Source camera identification from significant noise residual regions. In 2010, IEEE International Conference on Image Processing (pp. 1749-1752). IEEE.
[28]. Lukas, J., Fridrich, J., & Goljan, M. (2006). Digital camera identification from sensor pattern noise. IEEE Transactions on Information Forensics and Security, 1(2), 205-214.
[29]. Redi, J. A., Taktak, W., & Dugelay, J. L. (2011). Digital image forensics: A booklet for beginners. Multimedia Tools and Applications, 51(1), 133-162.
[30]. Sutcu, Y., Bayram, S., Sencar, H. T., & Memon, N. (2007, July). Improvements on sensor noise based source camera identification. In 2007, IEEE International Conference on Multimedia and Expo (pp. 24-27). IEEE.
[31]. Tauma, A., Comby, F., & Chaumont, M. (2016). Source camera identification using features from contaminated sensor noise. Springer International Publishing, 83-93.
[32]. Thampi, P. K. K. (2018). Source camera identification using DWT and LADCT. International Journal of Innovative Science and Research Technology, 3, 751-760.
[33]. Tomioka, Y., Ito, Y., & Kitazawa, H. (2013). Robust digital camera identification based on pairwise magnitude relations of clustered sensor pattern noise. IEEE Transactions on Information Forensics and Security, 8(12), 1986-1995.
[34]. Wang, B., Zhong, K., Shan, Z., Zhu, M. N., & Sui, X. (2020). A unified framework of source camera identification based on features. Forensic Science International, 307, 1-11. https://doi.org/10.1016/j.forsciint. 2019.110109
[35]. Yaqub, W., Mohanty, M., & Memon, N. (2018, October). Towards camera identification from cropped query images. In 2018, 25th IEEE International Conference on Image Processing (ICIP) (pp. 3798-3802). IEEE.