References
[1]. Alhejji, A., Hussein, M. E., Kamel, S., & Alyami, S. (2020). Optimal power flow solution with an embedded centernode unified power flow controller using an adaptive grasshopper optimization algorithm. IEEE Access, 8, 119020-119037. https://doi.org/10.1109/ACCESS.2020.29 93762
[2]. Attia, A. F., El Sehiemy, R. A., & Hasanien, H. M. (2018). Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. International Journal of Electrical Power & Energy Systems, 99, 331-343. https://doi.org/10. 1016/j.ijepes.2018.01.024
[3]. Basu, M. (2011). Multi-objective optimal power flow with FACTS devices. Energy Conversion and Management, 52(2), 903-910. https://doi.org/10.1016/j.enconman.2010 .08.017
[4]. Bouchekara, H. (2020). Solution of the optimal power flow problem considering security constraints using an improved chaotic electromagnetic field optimization algorithm. Neural Computing and Applications, 32(7), 2683-2703. https://doi.org/10.1007/s00521-019-04298-3
[5]. Chen, G., Qiu, S., Zhang, Z., Sun, Z., & Liao, H. (2017). Optimal power flow using gbest-guided cuckoo search algorithm with feedback control strategy and constraint domination rule. Mathematical Problems in Engineering, 1–14. https://doi.org/10.1155/2017/9067520
[6]. Chinta, P., Subhashini, K. R., & Satapathy, J. K. (2018). Optimal power flow using a new evolutionary approach: Animal migration optimization. In IEEE International Conference on Innovative Technologies in Engineering (pp. 11 – 13).
[7]. Dutta, S., Roy, P. K., & Nandi, D. (2016). Optimal location of STATCOM using chemical reaction optimization for reactive power dispatch problem. Ain Shams Engineering Journal, 7(1), 233-247.
[8]. El-Fergany, A. A., & Hasanien, H. M. (2015). Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms. Electric Power Components and Systems, 43(13), 1548-1559. https://doi.org/10.1080/15325008.2015.1041625
[9]. El-Fergany, A. A., & Hasanien, H. M. (2020). Salp swarm optimizer to solve optimal power flow comprising voltage stability analysis. Neural Computing and Applications, 32(9), 5267-5283. https://doi.org/10.1007/s00521-019-04 029-8
[10]. Herbadji, O., Slimani, L., & Bouktir, T. (2019). Optimal power flow with four conflicting objective functions using multiobjective ant lion algorithm: A case study of the algerian electrical network. Iranian Journal of Electrical and Electronic Engineering, 15(1), 94-113. https://doi.org/ 10.22068/IJEEE.15.1.94
[11]. Kamel, S., Ebeed, M., Yu, J., & Li, W. (2018). A comprehensive model of C-UPFC with innovative constraint enforcement techniques in load flow analysis. International Journal of Electrical Power & Energy Systems, 101, 289-300. https://doi.org/10.1016/j.ijepes.2018.03.034
[12]. Ladumor, D. P., Trivedi, I. N., Bhesdadiya, R. H., & Jangir, P. (2017, February). Optimal power flow problems solution with SVC using meta-heuristic algorithm. In 2017, Third International Conference on Advances in Electrical, Electronics, Information, Communication and Bio- Informatics (AEEICB) (pp. 283-288). IEEE. https://doi.org/ 10.1109/AEEICB.2017.7972430
[13]. Le Dinh, L., Vo Ngoc, D., & Vasant, P. (2013). Artificial bee colony algorithm for solving optimal power flow problem. The Scientific World Journal, 1–9. https://doi.org/ 10.1155/2013/159040
[14]. Mohamed, A. A. A., Mohamed, Y. S., El-Gaafary, A. A., & Hemeida, A. M. (2017). Optimal power flow using moth swarm algorithm. Electric Power Systems Research, 142, 190-206. https://doi.org/10.1016/j.epsr.2016.09.025
[15]. Momoh, J. A., El-Hawary, M. E., & Adapa, R. (1999). A review of selected optimal power flow literature to 1993. II. Newton, linear programming and interior point methods. IEEE Transactions on Power Systems, 14(1), 105-111.
[16]. Mukherjee, A., & Mukherjee, V. (2015). Solution of optimal power flow using chaotic krill herd algorithm. Chaos, Solitons & Fractals, 78, 10-21. https://doi.org/10.10 16/j.chaos.2015.06.020
[17]. Mukherjee, A., & Mukherjee, V. (2016). Solution of optimal power flow with FACTS devices using a novel oppositional krill herd algorithm. International Journal of Electrical Power & Energy Systems, 78, 700-714. https://doi. org/10.1016/j.ijepes.2015.12.001
[18]. Mukherjee, A., & Mukherjee, V. (2016). Solution of optimal power flow with FACTS devices using a novel oppositional krill herd algorithm. International Journal of Electrical Power & Energy Systems, 78, 700-714. https://doi. org/10.1016/j.ijepes.2015.12.001
[19]. Nguyen, T. T. (2019). A high performance social spider optimization algorithm for optimal power flow solution with single objective optimization. Energy, 171, 218-240. https:// doi.org/10.1016/j.energy.2019.01.021
[20]. Ooi, B. T., & Lu, B. (2000, June). C-UPFC: A new FACTS st controller with 4 degrees of freedom. In 2000, IEEE 31 Annual Power Electronics Specialists Conference Proceedings (Vol. 2, pp. 961-966). IEEE. https://doi.org/10. 1109/PESC.2000.879943
[21]. Reddy, S. S., Bijwe, P. R., & Abhyankar, A. R. (2014). Faster evolutionary algorithm based optimal power flow using incremental variables. International Journal of Electrical Power & Energy Systems, 54, 198-210. https:// doi.org/10.1016/j.ijepes.2013.07.019
[22]. Singh, R. P., Mukherjee, V., & Ghoshal, S. P. (2016). Particle swarm optimization with an aging leader and challengers algorithm for the solution of optimal power flow problem. Applied Soft Computing, 40, 161-177. https:// doi.org/10.1016/j.asoc.2015.11.027
[23]. Tehzeeb-Ul-Hassan, H., Zafar, R., Mohsin, S. A., & Lateef, O. (2012). Reduction in power transmission loss using fully informed particle swarm optimization. International Journal of Electrical Power & Energy Systems, 43(1), 364-368. https://doi.org/10.1016/j.ijepes.2012.05.028
[24]. Trivedi, I. N., Jangir, P., Parmar, S. A., & Jangir, N. (2018). Optimal power flow with voltage stability improvement and loss reduction in power system using Moth-Flame Optimizer. Neural Computing and Applications, 30(6), 1889-1904. https://doi.org/10.1007/s00521-016-27 94-6