References
[1]. Aakerberg, A., Nasrollahi, K., & Heder, T. (2017,
November). Improving a deep learning based RGB-D
object recognition model by ensemble learning. In 2017
Seventh International Conference on Image Processing
Theory, Tools and Applications (IPTA) (pp. 1-6). IEEE.
[2]. Chan, T. H., Jia, K., Gao, S., Lu, J., Zeng, Z., & Ma, Y.
(2015). PCANet: A simple deep learning baseline for image
classification? IEEE Transactions on Image Processing,
24(12), 5017-5032. https://doi.org/10.1109/TIP.2015.
2475625
[3]. Costilla-Reyes, O., Scully, P., & Ozanyan, K. B. (2017).
Deep neural networks for learning spatio-temporal features
from tomography sensors. IEEE Transactions on Industrial Electronics, 65(1), 645-653. https://doi.org/10.1109/TIE.201
7.2716907
[4]. Ghamisi, P., Höfle, B., & Zhu, X. X. (2016). Hyperspectral
and LiDAR data fusion using extinction profiles and deep
convolutional neural network. IEEE Journal of Selected
Topics in Applied Earth Observations and Remote Sensing,
10(6), 3011-3024. https://doi.org/10.1109/JSTARS.2016.2
634863
[5]. He, M., & He, D. (2017). Deep learning based
approach for bearing fault diagnosis. IEEE Transactions on
Industry Applications, 53(3), 3057-3065.
[6]. Lee, J., Kim, T., Park, J., & Nam, J. (2017). Raw
waveform-based audio classification using sample-level
CNN architectures. In 31st Conference on Neural
Information Processing Systems (NIPS 2017), Long Beach,
CA, USA. Retrieved https://arxiv.org/pdf/1712.00866.pdf
[7]. Li, P., Chen, Z., Yang, L. T., Zhang, Q., & Deen, M. J.
(2017). Deep convolutional computation model for
feature learning on big data in internet of things. IEEE
Transactions on Industrial Informatics, 14(2), 790-798.
[8]. Liu, B., Yu, X., Yu, A., & Wan, G. (2018). Deep
convolutional recurrent neural network with transfer learning
for hyperspectral image classification. Journal of Applied
Remote Sensing, 12(2). https://doi.org/10.1117/1.JRS.12.
026028
[9]. Loghmani, M. R., Rovetta, S., & Venture, G. (2017,
May). Emotional intelligence in robots: Recognizing human
emotions from daily-life gestures. In 2017 IEEE International
Conference on Robotics and Automation (ICRA) (pp. 1677-
1684). IEEE.
[10]. Luo, B., Wang, H., Liu, H., Li, B., & Peng, F. (2018). Early
fault detection of machine tools based on deep learning
and dynamic identification. IEEE Transactions on Industrial
Electronics, 66(1), 509-518. https://doi.org/10.1109/TIE.2
018.2807414
[11]. Pan, J., Zi, Y., Chen, J., Zhou, Z., & Wang, B. (2017).
Lifting Net: A novel deep learning network with layer wise
feature learning from noisy mechanical data for fault
classification. IEEE Transactions on Industrial Electronics,
65(6), 4973-4982. https://doi.org/10.1109/TIE.2017.276
7540
[12]. Shao, H., Jiang, H., Zhang, H., & Liang, T. (2017).
Electric locomotive bearing fault diagnosis using a novel
convolutional deep belief network. IEEE Transactions on
Industrial Electronics, 65(3), 2727-2736. https://doi.org/
10.1109/TIE.2017.2745473
[13]. Shi, C., Panoutsos, G., Luo, B., Liu, H., Li, B., & Lin, X.
(2018). Using multiple-feature-spaces-based deep
learning for tool condition monitoring in ultra precision
manufacturing. IEEE Transactions on Industrial Electronics,
66(5), 3794-3803. https://doi.org/10.1109/TIE.2018.28
56193
[14]. Sun, W., Zhao, R., Yan, R., Shao, S., & Chen, X. (2017).
Convolutional discriminative feature learning for induction
motor fault diagnosis. IEEE Transactions on Industrial
Informatics, 13(3), 1350-1359.
[15]. Vafeiadis, A., Kalatzis, D., Votis, K., Giakoumis, D.,
Tzovaras, D., Chen, L., & Hamzaoui, R. (2017, November).
Acoustic scene classification: From a hybrid classifier to
deep learning. In Workshop on Detection and
Classification of Acoustic Scenes and Events (DCASE2017).
[16]. Wen, L., Li, X., Gao, L., & Zhang, Y. (2017). A new
convolutional neural network-based data-driven fault
diagnosis method. IEEE Transactions on Industrial
Electronics, 65(7), 5990-5998. https://doi.org/10.11
09/TIE.2017.2774777
[17]. Yan, W., Tang, D., & Lin, Y. (2016). A data-driven soft
sensor modeling method based on deep learning and its
application. IEEE Transactions on Industrial Electronics,
64(5), 4237-4245. https://doi.org/10.1109/TIE.2016.26
22668
[18]. Yao, L., & Ge, Z. (2017). Deep learning of semi
supervised process data with hierarchical extreme learning
machine and soft sensor application. IEEE Transactions on
Industrial Electronics, 65(2), 1490-1498. https://doi.org/10.1
109/TIE.2017.2733448
[19]. Zhao, M., Kang, M., Tang, B., & Pecht, M. (2017).
Deep residual networks with dynamically weighted wavelet
coefficients for fault diagnosis of planetary gearboxes. IEEE
Transactions on Industrial Electronics, 65(5), 4290-4300.
https://doi.org/10.1109/TIE.2017.2762639