Automatic Generation Control of Hybrid Two Area Power System using Whale Optimization Algorithm

0*, Nerella Sameera**
* Department of Electrical and Electronics Engineering, Sir C. R. Reddy College of Engineering, Eluru, Andhra Pradesh, India.
** Department of Information Technology, Sir C. R. Reddy College of Engineering, Eluru, Andhra Pradesh, India.
Periodicity:October - December'2020
DOI : https://doi.org/10.26634/jee.14.2.17774

Abstract

The objective of the work is to design a load frequency controller for a two area Thermal-Thermal power system interconnected with a hybrid distributed generation system in area-1. A novel nature inspired meta-heuristic optimization algorithm, called Whale Optimization Algorithm (WOA) is used for obtaining the gain values of Proportional-Integral- Derivative (PID) controller. The dynamic system performance has been studied and the results obtained are compared with other techniques like Particle swarm optimization (PSO), Harmony search (HS), Flower pollination algorithm (FPA). The results demonstrate the robustness of the proposed algorithm in terms of settling time in the profile of frequency deviations. The simulation process is carried out in MATLAB R2010a environment.

Keywords

Load Frequency Control, Whale Optimization Algorithm, PID Controller, Hybrid Distributed Generation System.

How to Cite this Article?

Neeli, V. S. R. P. K., and Sameera, N. (2020). Automatic Generation Control of Hybrid Two Area Power System using Whale Optimization Algorithm. i-manager's Journal on Electrical Engineering, 14(2), 9-18. https://doi.org/10.26634/jee.14.2.17774

References

[1]. Behera, S. P., Biswal, A., Samantray, S. S., Swain, B. (2018a). Hybrid power systems frequency regulation using hybrid PIDF based robust controller design and Differential Evolution (DE) algorithm. In International Conference on Technologies for Smart-City Energy Security and Power (ICSESP). https://doi.org/10.1109/ICSESP.2018.8376698
[2]. Behera, S. P., Biswal, A., Swain, B., & Samantray, S. S. (2018b, March). Hybrid power systems frequency regulation using TID based robust controller design and differential evolution (DE) algorithm. In 2018 Technologies for Smart-City Energy Security and Power (ICSESP) (pp. 1-6). IEEE. https://doi.org/10.1109/ICSESP.2018.8376728
[3]. Bhatti, T. S., Al-Ademi, A. A. F., & Bansal, N. K. (1997). Load frequency control of isolated wind diesel hybrid power systems. Energy Conversion and Management, 38(9), 829-837. https://doi.org/10.1016/S0196-8904(96) 00108-2
[4]. Chatterjee, A., Ghoshal, S. P., & Mukherjee, V. (2012). Solution of combined economic and emission dispatch problems of power systems by an opposition-based harmony search algorithm. International Journal of Electrical Power & Energy Systems, 39(1), 9-20. https://doi.o rg/10.1016/j.ijepes.2011.12.004
[5]. Das, D. C., Roy, A. K., & Sinha, N. (2011a). PSO optimized for wind–solar thermal-diesel hybrid energy generation system: A study. International Journal of Wisdom Based Computing, 1(3), 128–133.
[6]. Das, D. C., Roy, A. K., & Sinha, N. (2011b, December). PSO based frequency controller for wind-solar-diesel hybrid energy generation/energy storage system. In 2011 International Conference on Energy, Automation and Signal (pp. 1-6). IEEE. https://doi.org/10.1109/ICEAS.20 11.6147150
[7]. Das, D. C., Roy, A. K., & Sinha, N. (2012). GA based frequency controller for solar thermal–diesel–wind hybrid energy generation/energy storage system. International Journal of Electrical Power & Energy Systems, 43(1), 262- 279. https://doi.org/10.1016/j.ijepes.2012.05.025
[8]. Das, D. C., Sharma, A., Dema, D., & Modi, A. (2015, November). Performance analysis of solar PV-diesel based autonomous hybrid power system using FFA and CSA optimized controller. In TENCON 2015-2015 IEEE Region 10 Conference (pp. 1-6). IEEE. https://doi.org/10.1109/TEN CON.2015.7373073
[9]. Das, D. C., Sinha, N., & Roy, A. K. (2014a). Automatic generation control of an organic rankine cycle solar– thermal/wind–diesel hybrid energy system. Energy Technology, 2(8), 721-731. https://doi.org/10.1002/ente.2 01402024
[10]. Das, D. C., Sinha, N., & Roy, A. K. (2014b). Small signal stability analysis of dish-Stirling solar thermal based autonomous hybrid energy system. International Journal of Electrical Power & Energy Systems, 63, 485-498. https://doi.org/10.1016/j.ijepes.2014.06.006
[11]. Debnath, M. K., Sinha, S., & Mallick, R. K. (2018). Automatic generation control including solar themal power generation with fuzzy-PID controller with derivative filter. International Journal of Renewable Energy Research (IJRER), 8(1), 26-35.
[12]. El-Amary, N. H., Balbaa, A., Swief, R. A., & Abdel- Salam, T. S. (2018). A reconfigured whale optimization technique (RWOT) for renewable electrical energy optimal scheduling impact on sustainable development applied to Damietta seaport, Egypt. Energies, 11(3), 535. https://doi.org/10.3390/en11030535
[13]. Elazab, O. S., Hasanien, H. M., Elgendy, M. A., & Abdeen, A. M. (2017). Whale optimization algorithm for photovoltaic model identification. The Journal of Engineering, 2017(13), 1906-1911.
[14]. Kumar, R. H., & Ushakumari, S. (2014, March). Biogeography based tuning of PID controllers for Load Frequency Control in microgrid. In 2014 International Conference on Circuits, Power and Computing Technologies [ICCPCT-2014] (pp. 797-802). IEEE. https://d oi.org/10.1109/ICCPCT.2014.7054992
[15]. Lal, D. K., & Barisal, A. K. (2017, August). Load frequency control of AC microgrid interconnected thermal power system. In IOP Conference Series: Materials Science and Engineering (Vol. 225, No. 1, p. 012090). IOP Publishing.
[16]. Lee, D. J., & Wang, L. (2008). Small-signal stability analysis of an autonomous hybrid renewable energy power generation/energy storage system part I: Timedomain simulations. IEEE Transactions on Energy Conversion, 23(1), 311-320. https://doi.org/10.1109/TEC.2 007.914309
[17]. Mirjalili, S., & Lewis, A. (2016). The whale optimization algorithm. Advances in Engineering Software, 95, 51-67. https://doi.org/10.1016/j.advengsoft.2016.01.008
[18]. Mohanty, B., Panda, S., & Hota, P. K. (2014a). Controller parameters tuning of differential evolution algorithm and its application to load frequency control of multi-source power system. International Journal of Electrical Power & Energy Systems, 54, 77-85. https://do i.org/10.1016/j.ijepes.2013.06.029
[19]. Mohanty, S. R., Kishor, N., & Ray, P. K. (2014b). Robust H-infinite loop shaping controller based on hybrid PSO and harmonic search for frequency regulation in hybrid distributed generation system. International Journal of Electrical Power & Energy Systems, 60, 302-316. https://doi.org/10.1016/j.ijepes.2014.03.012
[20]. Pan, I., & Das, S. (2016). Fractional order fuzzy control of hybrid power system with renewable generation using chaotic PSO. ISA Transactions, 62, 19-29. https://doi.org/ 10.1016/j.isatra.2015.03.003
[21]. Pandey, S. K., Mohanty, S. R., & Kishor, N. (2013). A literature survey on load–frequency control for conventional and distribution generation power systems. Renewable and Sustainable Energy Reviews, 25, 318-334. https://doi.o rg/10.1016/j.rser.2013.04.029
[22]. Pandey, S. K., Mohanty, S. R., Kishor, N., & Catalão, J. P. (2014). Frequency regulation in hybrid power systems using particle swarm optimization and linear matrix inequalities based robust controller design. International Journal of Electrical Power & Energy Systems, 63, 887-900. https://doi.org/10.1016/j.ijepes.2014.06.062
[23]. Senjyu, T., Nakaji, T., Uezato, K., & Funabashi, T. (2005). A hybrid power system using alternative energy facilities in isolated island. IEEE Transactions on Energy Conversion, 20(2), 406-414. https://doi.org/10.1109/TEC.2004.837275
[24]. Shankar, G., & Mukherjee, V. (2016). Load frequency control of an autonomous hybrid power system by quasioppositional harmony search algorithm. International Journal of Electrical Power & Energy Systems, 78, 715-734. https://doi.org/10.1016/j.ijepes.2015.11.091
[25]. Vakula, V. S., & Ramesh, N. (2017). Frequency regulation in hybrid power systems. International Journal of Engineering Development and Research, 5(3), 790-803.
If you have access to this article please login to view the article or kindly login to purchase the article

Purchase Instant Access

Single Article

North Americas,UK,
Middle East,Europe
India Rest of world
USD EUR INR USD-ROW
Pdf 35 35 200 20
Online 35 35 200 15
Pdf & Online 35 35 400 25

Options for accessing this content:
  • If you would like institutional access to this content, please recommend the title to your librarian.
    Library Recommendation Form
  • If you already have i-manager's user account: Login above and proceed to purchase the article.
  • New Users: Please register, then proceed to purchase the article.