References
[1]. F.G. Meyer and R.R. Coifman (1997 ). “Brushlets: a tool for directional image analysis and image compression,” Applied and Computational Harmonic Analysis, pp.147- 187.
[2]. Colm Mulcahy, “Image compression using the Haar wavelet transform” Spelman Science and Math journal, pp:22-31.
[3]. J. Rissanen, “Stochastic Complexity in Statistical Inquiry,” World Scientific, 189.
[4]. G.J. Sullivan (1996 ). “Efficient Scalar Quantization of Exponential and Laplacian Random Variables,” IEEE Trans. on Information Theory,Vol. 42, No.5, pp.1365-1374; Sept .
[5]. M.N. Do, and M. Vetterli (2000). “Orthonormal finite ridgelet transform for image compression,” in proc. IEEE Int. Conf. Image Processing (ICIP), Sept.
[6]. Pat Yip, (2000). “The Transform and Data Compression Handbook”, CRC Press ; sept.
[7]. M.L. Hilton, (1994). “Compressing still and Moving Images with wavelets”, Multimedia systems, Vol.2, No.3.
[8]. Anil K. Jain, (2000). “Fundamentals of Digital Image Processing”, Prentice Hall.
[9]. E.J. Candes and D.L. Donoho, (1999). “Curvelets.” Manuscript. http://www.stat.stanford.edu/~donoho/ Reports/1998/curvelets.zip; 1999.
[10]. Candes, E., Demanet, L., Donoho, D., and Ying, L. (2005). “Fast Discrete Curvelet Transforms,” Applied and Comp. Math., Caltech; July.
[11]. M. Frazier, B. Jawerth, and G. Weiss, (1991). “Littlewood- Paley Theory and the study of function spaces”. NSF-CBMS Regional Conf. Ser in Mathematics, 79. American Math. Soc.: Providence, RI; 1991.
[12]. D. Marr and E. Hildreth, (1980). “Theory of edge detection," Proc. Royal Society of London B 207, pp. 187- 217.
[13]. S.G. Mallat, (1989). “A theory for multiresolution signal decomposition: the wavelet representation," IEEE Transactions on Pattern Analysis and Machine Intelligence 11(7), pp. 674-693.
[14]. E. Simoncelli, W. Freeman, E. Adelson, and D. Heeger, “Shiftable multi-scale transforms [or "what's wrong with orthonormal wavelets"]," IEEE Trans. Information Theory ;1992.
[15]. B. Alpert, G. Beylkin, R. Coifman, and V. Rokhlin, (1993). “Wavelet-like bases for the fast solution of secondkind integral equations," SIAM J. Sci. Comput.