References
[1]. Ahmadi, P., Dincer, I., & Rosen, M. A. (2011). Exergy,
exergoeconomic and environmental analyses and
evolutionary algorithm based multi-objective optimization
of combined cycle power plants. Energy, 36(10), 5886-
5898.
[2]. Ahmadi, P., Dincer, I., & Rosen, M. A. (2012). Exergoenvironmental
analysis of an integrated organic Rankine
cycle for trigeneration. Energy Conversion and Management,
64, 447-453.
[3]. Baghernejad, A., & Yaghoubi, M. (2011). Multiobjective
exergoeconomic optimization of an integrated
solar combined cycle system using evolutionary
algorithms. International Journal of Energy Research, 35(7),
601-615.
[4]. Bejan, A., Tsatsaronis, G., & Moran, M. (1996). Thermal
design and optimization. Singapore: Wiley-Interscience
Publication.
[5]. Bolatturk, A., Coskun, A., & Geredelioglu, C. (2015).
Thermodynamic and exergoeconomic analysis of
Çayırhan thermal power plant. Energy Conversion and
Management, 101, 371-378.
[6]. Elmzughi, M. F., Radwan, E. M., Bahoor, M. A., & Dekam,
E. I. (2020a). Advanced exergoeconomic and exergy cost
sensitivity analyses of steam power plants. International
Journal of Scientific Engineering and Applied Science, 6(8),
16-32.
[7]. Elmzughi, M. F., Radwan, E. M., Bahoor, M. A., & Dekam,
E. I. (2020b). Part load 2nd law analyses of, 3-pressure stage
turbines with 6 heaters, 350 MW power plants. Journal of
Research in Mechanical Engineering, 6(1), 25-33.
[8]. Elsafi, A. M. (2015). Exergy and exergoeconomic
analysis of sustainable direct steam generation solar power
plants. Energy Conversion and Management, 103, 338-
347.
[9]. Gupta, M., & Kumar, R. (2015). Thermoeconomic
optimization of a boiler used in a coal fired thermal power
plant based on hot air temperature. International Journal of
Recent Advances in Mechanical Engineering (IJMECH), 4(2).
[10]. Lazzaretto, A., & Andreatta, R. (1995). Algebraic
formulation of a process-based exergy-costing method. In
Symposium on Thermodynamics and the Design, Analysis,
and Improvement of Energy Systems (Vol. 35, pp. 395-403).
ASME New York.
[11]. Manesh, M. K., Navid, P., Baghestani, M., Abadi, S. K.,
Rosen, M. A., Blanco, A. M., & Amidpour, M. (2014).
Exergoeconomic and exergo environmental evaluation of
the coupling of a gas fired steam power plant with a total
site utility system. Energy Conversion and Management,
77, 469-483.
[12]. Radwan, E. M., & Bahoor, M. A. (2020). Advanced
exergoeconomic and exergy cost sensitivity analyses of
350 MW steam power plants. International Journal of
Scientific Engineering and Applied Science, 6(8), 16-32.
[13]. Rakesh, D., Sanjay Kumar, M., & Gaurav. (2016).
Exergoeconomic analysis of 600 MW thermal power plant.
International Journal of Thermal Engineering, 2(1), 1-7.
[14]. Rashad, A., & El Maihy, A. (2009, May). Energy and
th exergy analysis of a steam power plant in Egypt. In 13
International Conference on Aerospace Science and
Aviation Technology (ASAT-13), Cairo, Egypt.
[15]. Sahoo, P. K. (2008). Exergoeconomic analysis and
optimization of a co-generation system using evolutionary
programming. Applied Thermal Engineering, 28(13), 1580-
1588.
[16]. Silveira, J. L., & Tuna, C. E. (2003). Thermoeconomic
analysis method for optimization of combined heat and
power systems. Part I. Progress in Energy and Combustion
Science, 29(6), 479-485.
[17]. Uche, J., Serra, L., & Valero, A. (2001). Thermoeconomic
optimization of a dual-purpose power and desalination
plant. Desalination, 136(1-3), 147-158.
[18]. Vučković, G. D., Stojiljković, M. M., Vukić, M. V.,
Stefanović, G. M., & Dedeić, E. M. (2014). Advanced
exergy analysis and exergoeconomic performance
evaluation of thermal processes in an existing industrial
plant. Energy Conversion and Management, 85, 655-662.
[19]. Xiong, J., Zhao, H., Zhang, C., Zheng, C., & Luh, P. B.
(2012). Thermoeconomic operation optimization of a
coal-fired power plant. Energy, 42(1), 486-496.